Sage
Summary
SAGE is a framework for number theory, algebra, and geometry computation. It is open source and freely available under the terms of the GNU General Public License (GPL). SAGE is a Python library with a
customized interpreter. It is written in Python, C++, and C (via Pyrex).
Python (http://www.python.org) is an open source object-oriented
interpreted language, with a large number of libraries, e.g.,
for numerical analysis, which are
available to users of SAGE. Python can also be accessed in library mode
from C/C++ programs. SAGE provides an interface to several
important open source libraries, including Cremona’s MWRANK library for
computing with elliptic curves, the PARI library (pari.math.u-bordeaux.fr)
for number theory, Shoup’s number theory library NTL (http://www.shoup.net/ntl/), SINGULAR (http://www.singular.uni-kl.de) for
commutative algebra, GAP (http://www.gap-system.org) for group theory and
combinatorics, and maxima (http://maxima.sourceforge.net) for symbolic
computation and calculus.
Authors
William Stein (project leader) David Joyner David Kohel John Cremona Iftikhar Burhanuddin
Vendor
William Stein (at Univ of Washington, Seattle)
Status
![projectstatus](images/lightgreen.png)
Aims and scope
Mathematical Classification
Keywords
- advanced number theory
- algebra
- algebraic geometry
- algebraic schemes
- algebras
- ambient Hecke modules
- ambient spaces
- arbitrary precision numbers
- calculus
- categories
- category theory
- ciphers
- classical ciphers
- classical cryptosystems
- coding theory
- combinatorial functions
- combinatorial geometry
- combinatorics
- commutative algebra
- complex numbers
- cryptography
- cryptosystems
- curvse
- Cuspidal subspaces
- dense matrices
- differentiation
- Dirichlet characters
- Dokchitser's L-function calculator
- Eisenstein series
- elementary number theory
- elliptic curves
- Euler's method for differential equation systems
- factorizations
- finite fields
- finite groups
- formal sums
- fraction fields of integral domains
- free Abelian monoids
- free algebra quotients
- free algebras
- free modules
- free monoids
- functors
- general linear groups
- generic convolution
- graph theory
- Groebner fans
- groups
- group theory
- Hecke algebras
- Hecke modules
- Hecke operators
- Hecke polynomials
- Heilbronn matrix computation
- homsets
- hyperelliptic curves
- ideals
- infinity rings
- integers
- integration
- Jacobian of a general hyperelliptic curve
- Laplace transforms
- lattice polytopes
- Laurent series
- Laurent series rings
- L-functions
- linear algebra
- linear codes
- linear groups
- Manin symbols
- matrices
- matrix
- matrix group homomorphisms
- matrix group Homsets
- matrix groups
- matrix spaces
- modular abelian varieties
- modular forms
- modular symbols
- modules
- monoids
- morphisms
- multivariate polynomial rings
- multivariate polynomials
- number field elements
- number fields
- numerical computation
- numerical fields
- orthogonal linear groups
- orthogonal polynomials
- p-adic rings
- permutation group functions
- permutation group homomorphisms
- permutation groups
- plane curves
- plotting
- polynomial rings
- polynomials
- polytopes
- power series
- power series rings
- prime numberss
- probability
- probability spaces
- quaternion algebras
- quaternion ideals
- quaternion oders
- quotient rings
- quotients of univariate polynomial rings
- random variables
- rational numbers
- real numbers
- reflexive polytopes
- Riemann's zeta function
- rings
- Rubik's cube group functions
- Rubistein's L-function calculator
- schemes
- sparse matrices
- special linear groups
- stream cryptosystems
- sudoku solver
- symbolic calculus
- symplectic linear groups
- term orderings
- unitary groups
- univariate polynomial rings
- univariate power series rings
- vectors
- Victor Miller bases
- visualization
- Watkins symmetric power L-function calculator