
PLTMG: A SOFTWARE PACKAGE FOR SOLVING ELLIPTIC
PARTIAL DIFFERENTIAL EQUATIONS

RANDOLPH E. BANK∗

Abstract. PLTMG 9.0 is a package for solving elliptic partial differential equations in general
regions of the plane. It is based on continuous piecewise linear triangular finite elements, and features
adaptive local mesh refinement, multigraph iteration, and pseudo-arclength continuation options for
parameter dependencies. It also provides options for solving several classes of optimal control and
obstacle problems. The package includes an initial mesh generator and several graphics packages.
Support for the Bank-Holst parallel adaptive meshing strategy is also provided.

PLTMG is provided as Fortran (and a little C) source code, in both single and double preci-
sion versions. The code has interfaces to X-Windows, MPI, and Michael Holst’s OpenGL image
viewer SG. The X-Windows, MPI, and SG interfaces require libraries that are NOT provided as
part of the PLTMG package. PLTMG is available from Netlib (http://www.netlib.org/), Mgnet
(http://www.mgnet.org/), and the author’s homepage (http://www.cam.ucsd.edu/˜reb). The SG
(socket graphics) OpenGL display tool is available from Michael Holst’s homepage
(http://scicomp.ucsd.edu/˜mholst/codes/index.html). MPICH (a free implementation of MPI) is
available from the MPI homepage (http://www-unix.mcs.anl.gov/mpi/mpich/).

1. Problem Specification.. Consider the elliptic boundary value problem

(1.1) −∇ · a(x, y, u,∇u, λ) + f(x, y, u,∇u, λ) = 0 in Ω,

with boundary conditions

u = g2(x, y, λ) on ∂Ω2,
a·n = g1(x, y, u, λ) on ∂Ω1,(1.2)

u, a·n continuous on ∂Ω0.

Here Ω is a bounded region in R2, n is the unit normal, a is the vector (a1, a2)t, a1,
a2, f , g1, and g2 are scalar functions. ∂Ω0 is a portion of ∂Ω where periodic boundary
conditions are applied. In some problems solved by PLTMG, the parameter λ is not
used, while in others λ ∈ R is a scalar parameter or λ ∈ H1(Ω), where H1(Ω) denotes
the usual Sobolev space. Let

H1
p = {φ ∈ H1(Ω) |φ is continuous on ∂Ω0},

H1
g = {φ ∈ H1

p |φ = g2 on ∂Ω2},
H1

e = {φ ∈ H1
p |φ = 0 on ∂Ω2}.

Then the weak form of (1.1)-(1.2) is: find u ∈ H1
g such that

(1.3) a(u, v) = 0 for all v ∈ H1
e,

where

(1.4) a(u, v) =
∫

Ω

a(u,∇u, λ) · ∇v + f(u,∇u, λ)v dx dy −
∫

∂Ω1

g1(u, λ)v ds.

∗Department of Mathematics, University of California, San Diego, La Jolla, California 92093-0112.
Email: rbank@ucsd.edu. The work of this author was supported by the National Science Foundation
under contract DMS-0208449. The UCSD Scicomp Beowulf cluster was built using funds provided
by the National Science Foundation through SCREMS Grant 0112413, with matching funds from
the University of California at San Diego.

1

http://www.netlib.org/
http://www.mgnet.org/
http://www.cam.ucsd.edu/~reb
http://scicomp.ucsd.edu/~mholst/codes/index.html
http://www-unix.mcs.anl.gov/mpi/mpich/


2 Randolph E. Bank

In some problems solved by PLTMG, a functional ρ(u, λ) plays an important role.
Functionals we consider are of the form

(1.5) ρ(u, λ) =
∫

Ω

p1(x, y, u,∇u, λ) dx dy +
∫

Γ

p2(x, y, u,∇u, λ) ds,

where p1 and p2 are scalar functions. Here Γ = ∂Ω ∪ Γ0, where Γ0 consists of certain
internal curves specified by the user.

This version of the PLTMG package address five major problem classes. These
are briefly described below.

1.1. Elliptic Boundary Value Problem.. For this problem, PLTMG solves a
discrete analog of (1.3). The parameter λ does not play a role in this problem. Let T
denote a triangulation of Ω and let M be the space of C0 piecewise linear polynomials
associated with T . PLTMG usually represents such a piecewise polynomial using
the standard nodal basis; a function can then be specified by giving its values at
the vertices. Let I : H1(Ω) → M denote continuous piecewise linear interpolation
operator that interpolates at the vertices of T . Then

Mp = {φ ∈M|φ is continuous on ∂Ω0},
Mg = {φ ∈Mp |φ = I(g2) on ∂Ω2},
Me = {φ ∈Mp |φ = 0 on ∂Ω2}.

The discrete equations solved by PLTMG are formulated as follows: find uh ∈ Md

such that

(1.6) a(uh, v) = 0 for all v ∈Me.

1.2. Obstacle Problem.. The second class of problems addressed by PLTMG
are the subset of variational inequalities known as obstacle problems. Let

K = {φ ∈ H1
g |u ≤ φ ≤ u}.

The obstacle problem is formulated as

(1.7) min
u∈K

ρ(u)

where ρ is a functional of the form (1.5). The parameter λ is not used in this problem.
Implicit in our formulation of this problem is an assumption that the Frechet derivative
of ρ corresponds to an elliptic boundary problem of the form (1.3). We also assume
that the bound constraints are consistent with the boundary conditions.

The discrete form of this problem is as follows. Let

Kh = {φ ∈Mg | I(u) ≤ φ ≤ I(u)}.

We then seek uh ∈ Kh that satisfies

(1.8) min
uh∈Kh

ρ(uh)



PLTMG 3

λ

ρ

A

BB

λ

ρ

Fig. 1.1. Continuation curves ρ= ρ(λ).

1.3. Continuation Problem.. Continuation problems addressed by PLTMG
are all of the form (1.3), where the parameter λ ∈ R. Continuation problems also
require a functional ρ as in (1.5). Solutions of (1.3)–(1.5) in general define a family
of curves on the (λ, ρ) plane. Typical curves are shown in Figure 1.1.

The singular point labeled “A” in the figure on the left is a limit (turning) point,
and those labeled “B” in the figure on the right are bifurcation points (this figure
corresponds to the special case of a linear eigenvalue problem). The purpose of the
continuation process is to compute solutions (u, λ) corresponding to points on these
curves.

PLTMG provides a suite of options for solving continuation problems. Among
them are options for following a solution curve to a target value in λ or ρ, locating
limit and bifurcation points, and switching branches at bifurcation points. Because
some problems might have more than one parameter of interest, PLTMG also has
options for switching parameters and functionals (changing the definitions of λ and
ρ) during the calculation, as a means of exploring higher dimensional spaces.

1.4. Parameter Identification Problem.. In this problem, a partial differen-
tial equation of the form (1.3) appears as a constraint in an optimization problem.
Here we seek λ ∈ R and u ∈ Hg that satisfy

(1.9) min ρ(u, λ)

subject to the constraint (1.3) and the simple bounds

(1.10) λ ≤ λ ≤ λ.

We define the Lagrangian

(1.11) L(u, v, λ) = ρ(u, λ) + a(u, v),

where v ∈ He is a Lagrange multiplier. We can solve the optimization problem by
seeking stationary points of L(u, v, λ) constrained by the simple bounds (1.10).

In the discretized problem, we seek uh ∈Mg, a discrete Lagrange multiplier vh ∈
Me, and λh ∈ R that correspond to a stationary point of L(uh, vh, λh), constrained
by the simple bounds

(1.12) λ ≤ λh ≤ λ.

As in the case of continuation problems, a problem of the form (1.9)–(1.10) may
involve more than one parameter of interest. At present, PLTMG does not allow



4 Randolph E. Bank

λ to be a vector of parameters, but it does allow parameter switching (redefining
the meaning on λ) during the course of the calculation. Thus one can sequentially
minimize (1.9) with respect to one of the parameters, holding the others fixed.

1.5. Optimal Control Problem.. This problem is very similar to the param-
eter identification problem, except now λ ∈ H1(Ω) (or perhaps some weaker space
where pointwise values of (1.14) below are defined). Thus we seek u ∈ Hg and
λ ∈ H1(Ω) that satisfy

(1.13) min ρ(u, λ)

subject to the constraint (1.3) and the simple bounds

(1.14) λ(x, y) ≤ λ ≤ λ(x, y)

for (x, y) ∈ Ω. As before, we define the Lagrangian

(1.15) L(u, v, λ) = ρ(u, λ) + a(u, v),

where v ∈ He is a Lagrange multiplier. We seek stationary points of L(u, v, λ) con-
strained by the simple bounds (1.14).

In the discretized problem, we seek uh ∈Mg, a discrete Lagrange multiplier vh ∈
Me, and λh ∈M that correspond to a stationary point of L(uh, vh, λh). constrained
by the simple bounds

(1.16) I(λ) ≤ λh ≤ I(λ).

2. Main Subroutines. The software package consists of six primary subrou-
tines. These main routines and their functions are summarized in Table 2. The
package uses two basic data structures to specify the domain Ω: the triangulation
and the skeleton. Loosely speaking, a triangulation specifies the domain Ω as the
union of triangles. A skeleton specifies the domain as the union of one or more subdo-
mains and requires only a description of the boundary of each subdomain. The user
can specify the domain as either a triangulation or a skeleton. Specifying a triangu-
lation generally requires less data only for simple domains that can be triangulated
with very few triangles. If the domain has a complicated geometry or has internal
interfaces that the user would like the triangulation to respect, then it is usually easier
to specify the domain as a skeleton.

Subroutine Main Function
TRIGEN Mesh generation and modification
PLTMG Solve partial differential equation
TRIPLT Display solution or related function
INPLT Display input data
GPHPLT Display performance statistics
MTXPLT Display sparse matrix

Table 2.1
The main subroutines in the package.

Subroutine TRIGEN is mainly concerned with transforming the data structures
defining the domain. TRIGEN also provides a posteriori error estimates for the



PLTMG 5

solution in the H1(Ω) and L2(Ω) norms. TRIGEN provides options for creating
triangulation and skeleton data structures, and adaptively modifying the triangulation
data structure. TRIGEN also provides options for various tasks related to parallel
processing, namely partitioning the mesh, broadcasting a given mesh to all processors,
reconciling a fine mesh distributed among several processors, and (possibly) collecting
a fine mesh from many processors onto just one.

Subroutine PLTMG uses finite element discretizations based on C0 piecewise
linear triangular finite elements and includes algorithms to address each of the problem
classes described above. In the case of parallel processing, PLTMG includes a domain
decomposition solver for each problem class.

Subroutine TRIPLT provides graphical displays of the solution and other grid
functions. Three-dimensional color surface/contour plots with shading and an ar-
bitrary viewing perspective are available. Subroutine INPLT provides a graphical
display of the mesh data (triangulation or skeleton) defining Ω. Subroutine GPHPLT
provides a variety of graphical displays of convergence histories, statistical data, and
other interesting output from PLTMG. Subroutine MTXPLT displays the stiffness
matrix A or the (approximate) LDU factorization of A in a graphical format.

An elementary interactive test driver, ATEST, provides options for calling each
of the main routines, as well as other useful functions such as writing and reading
data files, resetting parameters, and executing problem specific subroutines provided
by the user. Several short machine dependent routines are required for timing and
graphics. Some examples problems data sets are included with the source code.

PLTMG was originally conceived as a prototype program to study the theoretical
and practical aspects of the multigrid iterative method, adaptive grid refinement and
error estimation procedures, and their interaction. As such, PLTMG was designed to
(formally) handle a wide class of elliptic operators and reasonably general domains.
The boundary of the problem class has expanded as problems were encountered that
required its enlargement to be solved. The problem class addressed by this version
of PLTMG should not be interpreted as the limit of the class of problems that could
be successfully solved by the techniques embodied by this package. Conversely, one
should not assume that every problem (formally) within this class can be solved using
the existing code.

As with other versions of the package, time efficiency is a secondary consideration
to robustness, versatility, and ease of maintenance. While PLTMG is probably not
the fastest code that could be used for any particular problem, we believe that it will
deliver reasonable execution times in most environments.

3. Installation.. The package is provided in both single and double precision
versions. The code development was done in single precision, and the program S2D of
Jim Meyering (available from Netlib) was used to create the double precision version.
The source code is contained in several files as indicated in Table 3. The majority of
the source code is machine independent. The X-Windows interface is based on the
Motif widget set and can be used only on systems which support X-Windows. Certain
X-Windows libraries must be loaded along with the PLTMG software. The OpenGL
graphics program SG of Michael Holst has been integrated as one of several available
graphics devices. SG is available elsewhere, and its MALOC library must be loaded
along with the PLTMG software. Finally, the parallel processing options in PLTMG
are based on MPI, and the MPI library must also be loaded in order to resolve all
external names.

In MPI is not available or not desired, one can substitute the supplied stub inter-



6 Randolph E. Bank

File Contents
pltmg.f most source code
mgmpi.f (mgmpi stubs.f) MPI interface
mgvio.f (mgvio stubs.f) SG interface
xgui.c (xgui stubs.c) X-Windows interface
mgxdr.c XDR interface
atest.f test driver program
burger.f, battery.f, circle.f, control.f
domains.f, ident.f, jcn.f, message.f test problem data sets
mnsurf.f, naca.f, ob.f, square.f

Table 3.1
Files in the basic distribution.

face routines. The stub routines are a set of MPI interface routines with all calls to
MPI library functions and subroutines deleted. By using the stub routines in place of
the regular interface, one can create an executable with no unresolved external refer-
ences without loading the MPI library. In this case, however, all the parallel options
of PLTMG are disabled.

In a similar fashion, if SG is not available or not desired, one can use the stub
routines in place of standard interface routines. If the stub routines are used, the
MALOC library is not needed, but the SG OpenGL and BH file graphics devices are
disabled. Finally, if the X-Windows libraries are not available, one can replace the
X-Windows interface with stub routines. In this case, the graphical user interface and
the corresponding X-Windows graphics devices are all disabled, but the X-Windows
libraries are not needed.


