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ABSTRACT. The mathematical software system polymake provides a wide range
of functions for convex polytopes, simplicial complexes, and other objects.

1. INTRODUCTION

Polytope theory which lies in between applied fields, such as optimization, and more
pure mathematics, including commutative algebra and toric algebraic geometry, in-
vites to write software. When the polymake project started in 1996, there were
already a number of systems around which could deal with polytopes in one way or
another, e.g., convex hull codes such as cdd [11], 1rs [3], porta [7], and ghull [5],
but also visualization classics like Geomview [1]. The basic idea to polymake was
— and still is — to make interfaces between any of these programs and to continue
building further on top of the combined functionality. At the same time the gory
technical details which help to accomplish such a thing should be entirely hidden
from the user who does not want to know about it. On the outside polymake be-
haves somewhat similar to an expert system for polytopes: The user once describes
a polytope in one of several natural ways and afterwards he or she can issue re-
quests to the system to compute derived properties. In particular, there is no need
to program in order to work with the system. On the other hand, for those who do
want to program in order to extend the functionality even further, polymake offers
a variety of ways to do so.

The modular design later, since version 2.0, allowed polymake to treat other
mathematical objects in the same way. Mostly guided by the research of the second
author the system was augmented by the TOPAZ application which deals with finite
simplicial complexes. Because of the connections between polytope theory and
combinatorial topology both parts of the system now benefit from each other.

Previous reports on the polymake system include the two papers [12, 13]; by
now they are partially outdated. polymake is open source software which can be
downloaded from http://www.math.tu-berlin.de/polymake for free. This text
is an abridged version of [14].
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2. APPLICATIONS OVERVIEW

There are several different kinds of mathematical objects which polymake can deal
with, most notably convex polytopes and finite simplicial complex.

As it was shown in the tutorial section above the system’s behavior is driven
by rules. In fact, the part of the system which takes care of applying rules to
answer user requests is entirely independent of the mathematical objects and the
algorithms. Each class of objects comes with its own set of rules. We survey the
more technical aspects in Section 3. Here we focus on the mathematics.

2.1. Convex Polytopes. A convex polytope is the convex hull of finitely many
points in RY; this is its V-description. A basic result in this area says that this
notion coincides with those intersections of finitely many affine halfspaces in R¢
which are bounded (H-description). This is sometimes referred to as the Main
Theorem on convez polytopes. For an introduction to the theory, see Griinbaum [15]
or Ziegler [21].

In order to deal with polytopes algorithmically often a first step is to apply an
effective version of the “Main Theorem”. While a polytope may naturally be given
in its H-description (such as in linear programs) it is essential to also obtain a V-
representation if one is interested in combinatorial properties. Algorithms which
solve this problem are convezr hull algorithms. Many such algorithms are known
an implemented. The running-time that a particular algorithm/implementation
requires is known to vary strongly with the class of polytopes which it is applied
to; see Avis, Bremner, and Seidel [4] and also [16]. Therefore, polymake offers
three different convex hull algorithms for the user to choose. There is one which is
built into the system and two more, cdd [11] and 1rs [3], respectively, which are
accessible via interfaces. Actually, there also interfaces to porta [7] and ghull [5]
available, but these are disabled by default. For each call it is possible to specify
which algorithm to choose; additionally, the system can freely be configured to
generally prefer one algorithm over another.

Convex polytopes have a metric geometry look as well as a combinatorial one.
Both views are supported by polymake. What follows first is a list of metric prop-
erties which can be computed with the software.

> Gale transformations
> Steiner points

> projective linear transformations

> triangulations

> Voronoi diagrams and Delaunay cell decompositions in arbitrary dimension

Combinatorial properties include:
> fast face lattice construction algorithm; due to Kaibel and Pfetsch [18]
> f-vector, h-vector, flag- f-vector, and cd-index
> various graph-theoretic properties of the vertex-edge graph
> Altshuler determinant

In addition to these features there is a wide range of standard constructions and
visualization functions; e.g., see Figure 1. There is also an interface to Geomview [1].
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FIGURE 1. Schlegel diagram of the regular 120-cell (left) and a
Gale diagram of a random 6-dimensional 01-polytope with 10 ver-
tices (right).

2.2. Finite Simplicial Complexes. Given a finite vertezx set V, a simplicial com-
plex on V is a subset of 2V which is closed with respect to taking subsets. Simplicial
complexes form a basic combinatorial concept to capture properties of well-behaved
topological spaces. In particular, this way certain parts of topology get within reach
of effective methods.

A fundamental problem in topology is to decide whether two given spaces are
homeomorphic, that is, indistinguishable from the topological point of view, or
not. While it can be shown that this is algorithmically impossible — even for finite
simplicial complexes representing 4-dimensional manifolds — it remains a key task
to compute algebraic (homotopy) invariants.

polymake offers the following:

> simplicial homology and cohomology with integer coefficients
> cup and cap products

> Stiefel-Whitney characteristic classes

> intersection forms of 4-manifolds

> flip-heuristic by Bjorner and Lutz [6] for detecting spheres

In particular, in view of a celebrated result of Freedman [10], polymake is able to
solve the homeomorphism problem for combinatorial 4-manifolds which are simply
connected. See the survey [17] for some example computations.

2.3. Extensions and Related Concepts. The whole polymake system is exten-
sible in several ways. Besides adding new functionality to the applications dealing
with polytopes and simplicial complexes, it is possible to define entirely new classes
of objects with an entirely new set of rules. For the more technical aspects such an
extension the reader is referred to Section 3.

Here we list features which are already built into the system but which go beyond
standard computations with polytopes or simplicial complexes.

2.3.1. Tight Spans of Finite Metric Spaces. Every tree T with non-negative weights
on the edges defines a metric on the nodes of T. Conversely, it is easy to reconstruct
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the tree from such a tree-like metric. The phylogenetic problem in computational
biology boils down to the task to derive a sufficiently close tree from any given
finite metric space. It is obvious that sometimes there is no tree at all which fits
a given metric. Dress et al. [9, 8] devised tight spans as geometric objects which
can be assigned to any finite metric space and which capture the deviation from
a tree-like metric. Since tight spans can be described as bounded subcomplexes of
unbounded polyhedra, polymake’s features can be exploited.

Sturmfels and Yu [20] recently used TOPCOM [19] and polymake to classify tight
spans of metric spaces with at most six points.

2.3.2. Clurve Reconstruction. If a sufficiently well distributed finite set S of points
on a sufficiently smooth planar curve K is given, then it is possible to obtain a
polygonal reconstruction of K. Amenta, Bern, and Eppstein [2] obtained a curve
reconstruction procedure via an iterated Voronoi diagram computation. This beau-
tiful algorithm is implemented in polymake; see Figure 2.
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FIGURE 2. Planar curve(s) reconstructed from given points via the
crust method of Amenta, Bern, and Eppstein [2].

3. SOFTWARE DESIGN

Since its first version from 1997 polymake was —at least partially— re-written several
times. In spite of the many changes on the way, the core ideas always remained
the same. The first goal was to have a flexible interface structure such that it is
possible to interface to as many existing polytope processing software components
(developed by other people) as possible. The second goal was scalability in the
sense that the system should be useful both for programmers and mere users, and
also both for students and expert scientists.

Feeling that one language is not enough for this, this resulted in an object-
oriented hybrid design based on the two programming languages C++ and Perl. The
borderline is roughly defined as follows: The Perl side takes care of all the object
management and their interfaces, while the C++ half harbors the mathematical
algorithms. Information exchange between both worlds is subject to a client-server
scheme, Perl being the language of the server.

3.1. Open Objects. Convex polytopes are represented in the system as a class
of objects which are defined by an extendible list of properties. In the current
distributed version there are already more than one hundred of these properties
defined; they range from the vertices (VERTICES) and facets (FACETS) of a polytope
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to the list of Steiner points on all the faces (STEINER_POINTS) and the information
whether or not the polytope is SIMPLICIAL or CUBICAL.

The client perspective (on the C++ side) is very restricted: The client asks the
server for properties of some polytope object and leaves it entirely to the server to
decide how these should be obtained. The Perl-written server has a list of rules
which specify how to compute properties from the already known ones. For instance,
there is a rule which explains how the facets can be computed for a polytope which
was initially specified as the convex hull of finitely many points; that is, there is
a convex-hull algorithm rule which computes FACETS from POINTS. Actually, as in
this case it is the fact, there may be several competing rules computing the same.
It is the task of the server to compile admissible sequences of rules (via a Dijkstra
type algorithm for determining shortest weighted paths) to fulfill the user’s (or the
client’s) requests from the information initially given.

It is fundamental to the design that the set of rules as well as the list of prop-
erties known to the system can be expanded and modified. Moreover, the object
management is abstract, too; this way it is possible to define entirely new classes
of objects and rule bases for them. For instance, simplicial complexes are objects
different from polytopes (which actually includes pointed unbounded polyhedra),
while tight spans are specializations of polytope objects since they can be described
as the bounded subcomplexes of certain unbounded polyhedra; see Section 2.3.1.

3.2. Scripting. One way of using polymake is to generate large sets of polytopes
and to filter them for individual members with specific properties. Such tasks
are easily accomplished by often small Perl scripts which make use of polymake’s
object model.

As an example, the code below iterates through all the facets of a given polytope
and offers a visualization of the vertex-edge graphs of all the facets; on the way
combinatorially equivalent facets are detected and only one representative of each
class is shown.

application ’polytope’;
die "usage: polymake --script show_facets FILE\n" unless QARGV;

my $p=load($ARGV[0]);
my Q@list=Q);

FACETS:
for (my $i=0; $i<$p->N_FACETS; ++$i) {
my $facet=new Apps::polytope::RationalPolytope("facet #$i");
Modules::client("facet", $facet, $p, $i, "-relabel");
foreach my $other_facet (@list) {
next FACETS if (check_iso($facet, $other_facet));
}
push @list, $facet;

static_javaview;
$_->VISUAL_GRAPH for @list;
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This script show_facets is part of the distribution.

4. TECHNICAL REQUIREMENTS

polymake can be used on UNIX systems only. It has been successfully tested on
Linux, Sun Solaris, FreeBSD, MacOS X, IBM AIX and Tru64 Unix. Depending on
the size of your objects polymake can run on small machines with, say, 128 MB of
RAM. Only to compile the system from the source code at least 1 GB of RAM is
required.

Our website at http://www.math.tu-berlin.de/polymake offers the full source

code as well as several precompiled versions for download.
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