KANT
Summary
KASH/KANT is a computer algebra system for sophisticated computations in algebraic number fields and global function fields. It has been developed under the project leadership of Prof. Dr. M. Pohst at Technische Universität Berlin.
Authors
Current authors: Anita Krahmann, Carolin Just, Claus Fieker, Florian Heß, Jose Mendez, Jürgen Klüners, Marcus Wagner, Michael Pohst, Oliver Voigt, Robert Fraatz, Sebastian Freundt, Sebastian Pauli; Former authors: Andreas Hoppe, Carsten Friedrichs, Georg Baier, Harald Bartel, Hartmut Bauer, Johannes Graf v. Schmettow, Katharina Geißler, Klaus Wildanger, Maike Henningsen, Mario Daberkow, Martin Schörnig, Max Jüntgen
Vendor
KANT group, Institut für Mathematik, Technische Universität Berlin
Status
incomplete information or not officially approved by the authorsAims and scope
Mathematical Classification
Keywords
- Abelian groups
- algebraic number fields
- algorithmic number theory
- automorphisms
- basis matrices
- basis reduction
- Cartier operator
- Cartier operators
- Cartier representation
- characteristic polynomials
- Chinese remainder
- Cholesky decomposition
- coefficient rings
- computer algebra
- cryptography
- cyclotomic fields
- Dedekind test
- differential spaces
- differentiation
- diophantine equations
- diophantine equation solver
- eigenvalues
- Eisenstein series
- Eucledian algorithm
- Eucledian norm
- finite fields
- fractional ideals
- Galois groups
- Gaussian binomial
- gcd
- Gram matrices
- greatest common divisors
- Hasse-Witt invariant
- Hermite normal form
- Hilbert class fields
- Hilbert matrices
- ideal memberships
- ideal operations
- ideals
- ideal theoretic operations
- Ihara bound
- integral bases
- Kummer extensions
- lattices
- lcm
- least common multiples
- linear algebra
- L-polynomials
- matrices
- matrix
- minimal polynomials
- Minkowski bound
- Mordell curves
- multi-precision arithmetic
- multivariate polynomial factorization
- normalised Eisenstein function
- number theory
- p-adic fields
- p-adic numbers
- polynomial rings
- polynomials
- power series
- prime ideal decompositions
- programming language
- quotient fields
- quotient groups
- radicals
- ray class groups
- relative field discriminant
- residue class rings
- resultants
- Riemann-Roch spaces
- rings
- Serre bound
- Smith normal forms
- squarefree
- Steinitz normal form
- S-unit computation
- symbolic computation
- univariate polynomial factorization
- vectors
- Weierstrass places
- Weil differentials