PorLyBoR1I: A framework for Grobner basis
computations with Boolean polynomials

Michael Brickenstein

Mathematisches Forschungsinstitut Oberwolfach
Schwarzwaldstr. 9-11, 77709 Oberwolfach-Walke, Germany

Alexander Dreyer

Fraunhofer Institute for Industrial Mathematics (ITWM)
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

Abstract

This work presents a new framework for Grébner basis computations with Boolean polynomials.
Boolean polynomials can be modelled in a rather simple way, with both coefficients and degree
per variable lying in {0, 1}. The ring of Boolean polynomials is, however, not a polynomial ring,
but rather the quotient ring of the polynomial ring over the field with two elements modulo the
field equations 2 = « for each variable . Therefore, the usual polynomial data structures seem
not to be appropriate for fast Grébner basis computations. We introduce a specialised data struc-
ture for Boolean polynomials based on zero-suppressed binary decision diagrams (ZDDs), which
is capable of handling these polynomials more efficiently with respect to memory consumption
and also computational speed. Furthermore, we concentrate on high-level algorithmic aspects,
taking into account the new data structures as well as structural properties of Boolean poly-
nomials. For example, a new useless-pair criterion for Grébner basis computations in Boolean
rings is introduced. One of the motivations for our work is the growing importance of formal
hardware and software verification based on Boolean expressions, which suffer — besides from the
complexity of the problems — from the lack of an adequate treatment of arithmetic components.
We are convinced that algebraic methods are more suited and we believe that our preliminary
implementation shows that Grébner bases on specific data structures can be capable to handle
problems of industrial size.

Key words: Grober basis, formal verification, Boolean polynomials, algebraic cryptoanalysis,
satisfiability

1. Introduction

Grobner bases have become a standard tool for treating problems which can be de-
scribed by polynomial systems. While the concept of Grobner bases is known much longer,
their current practical importance is a result of dramatical improvements in performance
and algorithms in recent years. It has also been shown, that a specialised implemen-
tation can often tackle much harder problems, like Faugere’s HFE-attacks (2003). The
motivation for our work was to provide a framework for computations in the following
special but nevertheless important case of polynomials: coefficients lie in the field with
two elements and exponents are bounded to degree one in each variable. This degree
bound usually originates from the application of field equations of the form z? = .
As mentioned above, this occurs in many significant applications like formal verification
but also in cryptography, logic, and many more. This is due to the fact that Boolean
polynomials correspond to Boolean functions.

Although Grobner bases have already become a standard tool for treating polyno-
mial systems, current implementations have not been capable of satisfactorily handling
Boolean polynomials from real-world applications yet. One of the first questions was:
Can we use the simplified model to get better data structures? Of course, we did also
ask, whether we can find algorithmic improvements of the situation.

The role of POLYBORI in this context is to provide a framework of high performance
data structures and sample Grobner bases algorithms. On the other hand it is very clear,
that many problems arising from practise can only be tackled, if optimisation occurs on
many levels: data structures, higher level algorithms, formulation of equations/problems,
good monomial orderings. . .

An important aspect in symbolic computation is that independent of the strategy
polynomials can become very big, but usually keep structured (in a very general sense).
Using this structure to keep the memory consumption moderate was a primary design
goal of POLYBORI. Another observation is that in Grobner bases computations often
arithmetical operations on similar polynomials (differing only in a few terms) occur.
PorLyBoRI also gives an answer to that problem using a cache mechanism on the level
of substructures.

Even though it is not essential for the present paper, the reader may be interested
in the following short description of one important application: Formal verification
is a key challenge during the design process of digital systems. The goal is to have an
automated and dependable way of finding errors in a given layout, before a prototype is
built. See also (McMillan, 1993; Hachtel and Somenzi, 1996; Kunz et al., 2002) for more
details.

Classical methods for design validation include the simulation of the system with
respect to suitable input stimuli as well as tests based on emulations, which use sim-
plified prototypes. The latter may be constructed using field programmable gate ar-
rays (FPGAs). Due to a large number of possible settings, these approaches cannot cover

* This work has been partly financed by the Deutsche Forschungsgemeinschaft (DFG) under Grand
No. GR 640/13-1.

Email addresses: brickenstein@mfo.de (Michael Brickenstein),
alexander.dreyer@itwm.fraunhofer.de (Alexander Dreyer).

URLs: http://wuw.mfo.de (Michael Brickenstein),
http://www.itwn.fraunhofer.de (Alexander Dreyer).

the overall behaviour of a proposed implementation. In the worst case, a defective system
is manufactured and delivered, which might result in a major product recall.

In contrast, formal verification methods are based on eract mathematical methods
for automated proving of circuit properties. In this context several approaches like SAT-
solving, graph representation of Boolean functions, and (timed) finite automata are al-
ready in use for bringing a designer’s concept into agreement with the required specifi-
cations. Here, formal methods have the ability to disclose unexpected sideeffects early
in the design process, and also they may show that certain short-hand assumptions are
really true for all input patterns and states.

The ability of checking the validity of a proposed design restricts the design itself: a
newly introduced design approach may not be used for an implementation as long as its
verification cannot be ensured. In particular, this applies to digital systems consisting
of combined logic and arithmetic blocks, which may not be treated with specialised
approaches. Here, dedicated methods from computer algebra may lead to more generic
procedures, which help to fill the design gap.

Following, we start with a motivation of suitable data structures for handling of
Boolean polynomials and continue with some mathematical background. Then we give a
brief description of the POLYBORI framework and the implemented algorithms. Finally,
the treatment of some benchmark examples is compared with those of other computer
algebra systems.

2. Boolean Polynomials as Sets

We are actually interested in Boolean polynomials, i. e. polynomials in the quotient

ring Q = Zalx1,- -+ ,xn)/{x? — 21, ,22 — x,). Hence, we deal with elements of the
polynomial ring P = Zs[x1, -+ , x,] restricted by the field equations
=2, 25 =29, - 22 =2,. (1)

Under these conditions a polynomial p €) can be written in its expanded form as

— Vi1 Vi Vm1 Vimn
p=ay-x{" Tt ay] amn (2)

with coefficients a; € {0,1}. Furthermore, the constraints z? = x; in Equation 1 yield

a degree bound on all variables of v;; < 1. In particular, the latter can be restated as the
condition Vij € {0, 1}.

Hence, a given Boolean polynomial p is defined by the fact, whether a term «7%*-. . .-zVin
occurs in it. Analogously, the occurrences of the variables determines each term. One can
assign a set S, = {s;, -+, s} to p consisting of different subsets s, s; # s; for ¢ # j,
of the variable vector {x1,--- ,z,}. Then Equation 2 can be rewritten as

p= Z <HIV> with SP:{{xiu"'7Iin1}a"'7{Iima"'7xinm}}' (3)
s€S, \zy€s M .

For practical applications it is reasonable to assume that .S, is sparse, i.e. the set
is only a small subset of the power set over the variable vector. Even the s; can be
considered to be sparse, as usually quite few variables occur in a term. Consequently,
the strategies of the used algorithms have to be tuned in such a way, that this kind of
sparsity is preserved.

2.1. Zero-suppressed Binary Decision Diagrams

A binary decision diagram (BDD) is a rooted, directed, and acyclic graph with two
terminal nodes {0, 1} and decision nodes. The latter have two ascending edges (high/low
or then/else), each of which corresponding to the assignment of true or false, respectively,
to a given Boolean variable. In case, that the variable order is constant over all paths,
we speak of an ordered BDD. For a more detailed treatment of the subject for instance
see Ghasemzadeh (2005) and Bérard et al. (1999).

A series of connected nodes of a BDD starting at the root and ending at a terminal
node is called path. We call a path valid, if it finishes at the terminal 1. Since any
subset of the power set of the variables can be represented by the set of all valid paths
of a suitable BDD, these diagrams are perfectly suited for the representation of Boolean
polynomials suggested in Section 2.

For efficiency reasons it is useful to omit variables, which are not necessary to construct
the whole set. A classic variant for this purpose is the reduced-ordered BDD (ROBDD,
sometimes referred to as “the BDD”). These are ordered BDDs with equal subdiagrams
merged, i.e. if some edges point to equivalent subdiagrams, those are forced to point
to the same diagram and share it. Furthermore, a node elimination is applied, if both
descending edges point to the same node.

While the last reduction rule is useful for describing numerous Boolean-valued vectors,
it is gainless for treating sparse sets. For this case, zero-suppressed BDDs (ZDD,
also ZBDD or ZOBDD) have been introduced. They are also ordered and make use of
subtree merging, but the node-elimination rule differs. Here, a node is removed if and
only if its then-edge points to the O-terminal. Figure 1 shows example ZDDs for a given
Boolean polynomial. Note, that both constructions guarantee canonicity of resulting

[}
1
1

1
1
!

1
!
[
1

L

L

0 1 0

(a) a,b,c (b) a,c,b

Fig. 1. ZDD representing the polynomial a c4b c+c for two different variable orders. Dashed/solid
connections marking then/else-edges, respectively.

diagrams, see Ghasemzadeh (2005). But still the structure of resulting decision diagrams
depend on the order of variables. In particular, the number of diagram nodes is highly
sensitive to it, as Figures 1(a) and 1(b) illustrate. Therefore, a suitable choice of the order
is always a crucial point, when modelling a problem using sets of Boolean polynomials.

2.2. State of the Art

Although graph-based approaches using decision diagrams for polynomials were al-
ready proposed before, those were not capable of handling algebraic problems efficiently.
This was mainly due to the fact that the attempts were applied to very general polyno-
mials, which cannot be represented as binary decision diagrams in a natural way.

For instance, the use of ZDDs for representing polynomials with integer coefficients
can be found in Minato (1995). In this context coefficients and degrees had to be coded
in a binary manner, which had lead to large diagram trees, even for rather small polyno-
mials. Assuming bit length of m for each polynomial variable x,,, a number of m decision
variables has to be introduced in order to represent 1, 2, .- 22" . Arbitrary z” may be
obtained by decomposing n into a sum of exponentials with respect to base 2. The same
can be done to binary encode the coefficients. For instance, the polynomial 5x2 + 2z y
has to be decomposed into z2? + 2222 + 2! z! ¢!, with the new set of decision “vari-
ables” {22, 21, y!, 22,21}

In this general case addition and multiplication correspond to costly set operations
involving de- and recoding of coefficient and degree numbers. Another reason, why ZDDs
were not used in computer algebra before, is the importance of nontrivial monomial or-
derings. Usually, computer algebra systems store polynomials with respect to the current
monomial ordering (Bachmann and Schénemann, 1998). This enables fast access to the
leading term, and efficient iterations over all terms. In contrast, binary decision dia-
grams are ordered naturally in a lexicographical way. Fortunately, for special cases like
the Boolean polynomials described in Section 2, it is possible to implement a search for
the leading term and term iterators with suitable effort. Also, the special case of Boolean
polynomials can be mapped to ZDDs more naturally, since the polynomial variables are in
one-to-one correspondence with the decision variables in the diagram. The same applies
for the polynomial arithmetic, which can efficiently be done using basic set operations.
The PoLyBoORI framework presented in this work is addressed to the utilisation of this
in a user-friendly environment.

Our approach can also be considered in the context of the meta approach of Coudert
and Madre (1992). Boolean variables x1, - - - , x,, yield 2" possible configurations in {0, 1}"
for assigning true or false to each z,. Enumerating all valid solution vectors with respect
to rather simple relations leads quickly to large and dense subsets of {0,1}". Since those
sets cannot be handled efficiently, it had been suggested to store and manipulate the re-
lations, which implicitly define the sets. In the language of computer algebra, the implicit
relations are systems of Boolean polynomials. Hence, we can draw from of the experience
with Grébner bases computations and heuristics for the treatment of polynomial systems.
In addition, especially tuned strategies can be refined and developed when obeying the
unique properties of Boolean rings.

3. Algebraic Basics

In this section, we recall some algebraic basics, including classical notions for the treat-
ment of polynomial systems, as well as basic definitions and results from computational
algebra. For a more detailed treatment of the subject see the book of Greuel, G.-M. and
Pfister, G. (2002) and the references therein.

3.1. Classical Notions

Let P = K[x1,...,x,] be the polynomial ring over the field K. A monomial ordering
on P, more precisely, on the set of monomials {z® = 27" - ... z8"|a € N"}, is a well
ordering “>” (i.e. each nonempty set has a smallest element with respect to “>”) with
the following additional property: ® > zf = 27 > 2747 for v € N™.

An expression Am (A € K, m a monomial) is called a term and A the coefficient.
An arbitrary element f € P is called a polynomial.

Let f =3, ¢a 2% (Ca,i € K) a polynomial. Then

supp(f) := {2%|ca # 0}

is called the support of f.

Furthermore Im(f) denotes the leading monomial of f, the biggest monomial oc-
curring in f w.r.t. “>” (if f # 0). The corresponding term is denoted by 1t(f) and the
coefficient by lc(f). Moreover, we set

tail(f) = f = I(f).
If F C P is any subset, L(F') denotes the leading ideal of F', i. e. the ideal in P generated
by {Im(f)|f € F\{0}}. The S-Polynomial of f,g € P\{0} with Im(f) = 2%, Im(g) = 2”
is denoted by
IC(f) y—03

SpOIy(fvg) = x’Y—Otf - @.’IJ g,

where v = lem(a, 8) := (max(aq, 51), ..., max(,, 8,)). Recall that G C P is called a
Grobner basis of an ideal I C P, if {lm(g)|g € G\{0}} generates L(I) in the ring P
and G C 1.

Definition 1 (Standard representation). Let f, g1,...gm € P, and let
hi,...,hy € P. Then

m
f:Zh’Lgl S K[x1a~~'7xn]a
i=1
is called a standard representation of f with respect to g1, ..., gm, if

Vi : h; - g; =0 or otherwise 1lm(h; - g;) < lm(f).
The classical product criterion of Buchberger (Buchberger, 1985) reads as follows:

Lemma 3.1 (Product criterion). Let f,g € K|[z1,...,x,] be polynomials. If the equal-
ity Im(f)-lm(g) = lem(lm(f),1lm(g)) holds, then spoly(f, g) has a standard representation
w.r.t. {f, g}

Definition 2 (Elimination orderings). Let R = Klx1,...,Zn,Y1,-..Ym]. An order-
ing “>" is called an elimination ordering of x1,...,x,, if x; > t for every monomial ¢
in K[y1,...,ym] and every i = 1,... ,n.

3.2. t-Representations

There is an alternative approach to standard representations formulated in (Becker
and Weispfennig, 1993) and used in (Faugere, J.-C., 1999), which utilises the notion of
t-representations. While this notion is mostly equivalent to using syzygies, it makes the
correctness of the algorithms easier to understand.

Definition 3 (t-representation). Let ¢ be a monomial, f, ¢1,...9m € P, h1,..., hy € P.

Then
m
f= Z hi-g; € P
i=1
is called a t-representation of f with respect to g1,..., gm if
Vi:lm(h; - g;)) <torh;-g;=0.
Example 4.

e Let the monomials of P be lexicographically ordered (z > y) and let
t=a g =a’go=2" -y, f=y
e Then f = 23g; — g» is a 2°y°-representation for f.

e Each standard representation of f is a lm(f)-representation.
e For ¢t < Im(f) t-representations of f do not exist.

Notation: Given a representation p = 2221 h; - f; with respect to a family of poly-
nomials f1,... fm, we may shortly say that p has a nontrivial ¢t-representation, if a
t-representation of p exists with

t < max{lm(hi . f1)|hl . fi 7é 0}

For example, spoly(f;, f;) has a nontrivial t-representation if there exists a representation
of spoly(f;, fj) where the summands have leading terms smaller than

lem(Im(f;), Im(f;)).

Theorem 3.2. Let F = (f1,..., fx), fi € K[z1,...,2,], be a polynomial system. If for
each f, g € F spoly(f, g) has a nontrivial t-representation w.r.t. F, then F is a Grobner
basis.

Proof. For a full proof see (Becker and Weispfennig, 1993). A more sophisticated version
of this theorem can be formulated and proven analogously to (Greuel, G.-M. and Pfister,
G., 2002, p. 142). O

4. The PoLyBoRI Framework

With PoLyBoRI, we have implemented a C++ library for Polynomials over Boolean
Rings, which provides high-level data types for Boolean polynomials and monomials,
exponent vectors, as well as for the underlying polynomial rings. The ring variables may
be identified by their indices or by a custom string. Polynomial structures and mono-
mials use ZDDs as internal storage type, but this is hidden from the user. The current
implementation uses the decision-diagram management from CUDD (Somenzi, 2005). Its
functionality is included using interface classes, which allows an easy replacement of the
underlying BDD system without extensive rewriting of crucial POLYBORI procedures.

In addition, basic polynomial operations — like addition and multiplication — have been
implemented and associated to the corresponding operators. In order to enable efficient
implementation, these operations were reformulated in terms of set operations, which are
compatible with the ZDD approach. This also applies to other classical functionality like

degree computation and leading-term computations. The ordering-dependent functions
are currently available for lexicographical, degree-lexicographical (graded-lexicographical)
ordering (with first variable being the largest one), and degree-reverse-lexicographical or-
dering, whereas in the latter case the variables are treated in reversed order for efficiency
reasons. Product orderings consisting of blocks of these are currently at experimental
state.

A complete Python (Rossum and Drake, 2006) interface allows for parsing of complex
polynomial systems, and also sophisticated and easy extendable strategies for Grobner
base computation have been made possible by this. An extensive testsuite, which mainly
carries satisfiability examples and some from cryptography, is used to ensure validity
during development. Also, with the tool ipython the PoLYyBoORI data structures and
procedures can be used interactively as a command line tool. In addition, routines for
interfacing with the computer algebra system SINGULAR (Greuel et al., 2005) are under
development.

4.1. Polynomial Arithmetic

Boolean polynomial rings are motivated by the fact, that logical operations on bits can
be reformulated in terms of addition and multiplication of Zs-valued variables. Represent-
ing polynomials as ZDDs these operations may also be implemented as set operations.
For instance, adding the polynomials p = > ¢ (IL,, e #v) and g = > ses, (I, cs zv),
with S, and S, as illustrated in Equation 3 (Section 2), is just p+q = Zsesp+q (nyes),
where Sp1q = (Sp U Sg)\(Sp N Sy). Although each of these three operations is already
available for ZDDs, it is usually more preferable to have them replaced by one specialised
procedure. This avoids large intermediate sets (like S, U S,) and repeated iterations over
both arguments. Algorithm 1 below shows a recursive approach for such an addition. Note

Algorithm 1 Recursive addition h = f + g
Require: f, g Boolean polynomials.

if f =0 then
h=g

else if ¢ =0 then
h=f

else if f = g then
h=0

else

set x, = top(f), x, = top(g)
if v < p then
h = ite(x,, then(f), else(f) + g)
else if v > u then
h = ite(x,, then(g), f + else(g))
else
h = ite(z,, then(f) + then(g), else(f) + else(g))
return h

that top(p) = min{J,cg s denote the variable associated to the root node of the cur-
rent ZDD. Also, then- or else-branch of the latter correspond to polynomials referred to
as then(p) and else(), respectively. Since the indices of top(p), top(q) are greater than i,

the if-then-else operator ite(x;,p,q) = x; - p + ¢ used here, can just be generated by
linking then- and else-branches of the new root node for x; to p and ¢, respectively.
In a similar manner multiplication is given in Algorithm 2. The advantage of the

Algorithm 2 Recursive multiplication h = f - g

Require: f, g Boolean polynomials.

if f =1 then
h=g

else if f =0 or g =0 then
h=0

else if g=1or f = g then
h=Ff

else
, = top(f), z, = top(g)
if v < pu then

set p1 = then(f), po = else(f), g1 =g, g0 =0
else if v > u then

set pP1 = then(g)v bo = 6186(9)7 q1 = fa do = 0
else
set p1 = then(f), po = else(f), ¢1 = then(g), go = else(g)
h = ite(Zmin(v,u)> Po - @1 + P1 - q1 + P1 - o, Po - Go)
return h

recursive formulation is, that one easily can look up in a cache, whether the sum f + g,
or the product f - g, has already been computed before. The lookup can be placed
in the beginning of the procedure, right after the trivial if-statements. Since this also
applies those subpolynomials, which are generated by then(f) and else(f), it is very
likely, that common subexpressions can be reused. Even more, in the case of Grébner
base computations, in which likewise polynomials occur quite often. This is caused by
those multiplication and addition operations used in Buchberger-based algorithms for
elimination of leading terms and the tail-reduction process. Hence, while generating new
Grobner base elements the procedure results in summing up the same terms (up to some
factor), which can be represented by combinations of subdiagrams of the original ZDDs.

4.2. Monomial Orderings

The operations treated in Section 4.1 are independent of the actual monomial ordering.
Crucial for Grobner algorithms is the computation of the leading term or leading
monomial. Both concepts are equal in our context, and mean the largest monomial,
with respect to the current “<”-relation. Lexicographically, the leading monomial is
just the product of all node variables in the first valid path of the underlying ZDD, i.e.
the sequence of nodes from the root down to the 1-leaf consisting of those nodes adjacent
by then-branches only.

In case of degree orderings, one has to work harder. For instance, the leading monomial
for the degree-lexicographical ordering can be found by iterating over all monomials (see
Section 4.3) as follows: initially, degree and monomial of the first term is stored. If incre-
menting to the next term leads a strictly higher degree, both — degree and monomial —

Algorithm 3 Recursive leading term and degree (degree-lexicographical)
{h,d} = lead_and_deg(f) = {lead(f),deg(f)}
Require: f Boolean polynomial.
if f is constant then
h=1,d=0
else
{h1,d1} = lead_and_deg(then(f)), {ho,do} = lead_and_deg(else(f))
if dy < d; +1 then
h=top(f) -h1,d=dy +1
else
h=hg, d=dy
return {h, d}

are replaced by the current ones. This naive approach does not make use of recursions,
and hence it cannot be cached efficiently. A more suitable variant is given in Algorithm 3.

Sometimes the degree of a polynomial is cheap to compute, for instance, if an upper
bound, like the sugar value discussed in Section 5.1 can be used, as Algorithm 4 illus-
trates. In any case, the number of ring variables may always be used for such an upper

Algorithm 4 Recursive degree computation d = deg(f, dmax) With upper bound

Require: f Boolean polynomial, d;,,x upper bound for degree
if f is constant then
d=0
else
dy = deg(then(f),dmax — 1) + 1
if di = dppax then

d=d
else
d = max(dy, deg(else(f), dmax))
return d

bound. Also caching is useful, since immediately a single call of deg(f) makes deg(g)
available on the cache for all recursively generated subpolynomials. Having such a kind
of cheap deg-functionality available, one can formulate Algorithm 5, which only generates
the leading term, but not the other terms of the polynomial.

Algorithm 5 Recursive leading term h = lead(f) (degree-lexicographical)

Require: f Boolean polynomial.
if deg(f) =0 then
h=1
else if deg(f) = deg(then(f)) + 1 then
h = top(f) - lead(then(f))

else
h = lead(else(f))
return h

Note, that similar algorithms can be formulated for the degree-reverse-lexicographical
ordering (with reversed variable order). For this purpose, the strict less-comparison in

10

Algorithm 3 has to be replaced by less or equal, and in Algorithm 5, the else-branch has
to be tested instead of the then-branch.

4.3. Iterators

PorLyBoORI’s polynomials also provide term access. For this purpose iteration over all
monomials was implemented in the style of Standard Template Library’s (STL) iterators,
obtained using begin() and end() member functions, like in Stepanov and Lee (1994).
Very much like a generalisation of the pointer concept, such a kind of iterator can be
dereferenced to gain constant, i. e. read-only, access to the current term, and incremented
to go to the next term in question. Also, comparison with other iterators of the same type
is possible. In particular, equality with a special end marker yields the end of the iteration.
This ensures compatibility with STL algorithms, originally designed for template classes
like std: :vector and std::list.

This kind of term iterator was implemented by a stack, which stores a sequence of
references pointing to the diagram nodes. Initially, these are generated from following
the first valid path. The resulting term is then stored using a temporary variable. In-
crementing the iterator is equivalent to popping the top element from stack as long as
the corresponding nodes have invalid else-edges only. Then the subdiagram adjacent to
this edge, and also its first valid path, is put on the stack, in order to represent the next
lexicographical term. After popping/filling the temporary term value has to be updated
subsequently.

In addition to the natural order of the underlying ZDD, iterators have been imple-
mented for all supported monomial orderings. This hides the fact, that the internal data
structure is actually ordered lexicographically. Hence, we have a sophisticated program-
ming interface, which allows the formulation of general procedures in the manner of
computational algebra, without the need for caring about certain properties of binary
decision diagrams or the current ordering.

5. Algorithmic Aspects in Higher Level Computations

PorLyBoRI implements basic polynomial arithmetic as well as higher level functions
from computational algebra as Grébner basis algorithms and normal form computations.
These algorithms from computational algebra have been adjusted to the facts that
e We have a very special situation: only coefficients 0 or 1, no exponents greater than 1.
e The framework can only represent Boolean polynomials (which is sufficient for the
practise, since Boolean functions are equivalent to Boolean polynomials), but not gen-
eral polynomials, in particular not the field equations themselves.

e Our data structures behave completely different, some operations are more costly, some
are faster.

Paying attention to these points it is possible to achieve high performance using POLY-

BoRIL

11

5.1. Leading Terms

It is a common practise in computational algebra to have a degree bound (or sugar
value, see Giovini et al., 1991) of intermediate polynomials, which can be generated using
basic degree formulas, like

deg(f + g) < max(deg(f),deg(g))-

In PorLyBoRI these degree bounds are of even greater use.

Even in degree orderings you can make use of them: Having the degree bound you
can speed up leading-term calculations, having the leading term you can improve the
degree bound (this is not the exact, original sugar strategy, but it behaves very useful in
practise).

5.2. Normal Forms

A good example for this redesign of existing algorithms is the classical normal form
algorithm:

Algorithm 6 Buchberger normal form

Require: G finite tuple of Boolean polynomials, f Boolean polynomial.
while f # 0 and 3¢9 € G : Im(g)|1Im(f) do

f=spoly(f,g)
return f

An algorithm more suitable in PoLYBoORI would be the following;:

Algorithm 7 Greedy normal form
Require: G finite tuple of Boolean polynomials, f Boolean polynomial.
while f # 0 and 39 € G : Im(g)|Im(f) do
h = f/lm(g) /* division by remainder, so the resulting terms correspond to terms
in f divisible by the lead of g */
f:=f—h-g /* noterm of f is divisible by lm(g) any more */
return f

This last algorithm combines many small steps. The cost of the single steps can be
higher using ZDD operations, but the combined step can be done much faster. The high
cost (compared to classical polynomial representations) of these single additions might
be surprising in the first moment, but can be explained quite easily. Good normal form
strategies try to select a monomial for g, whenever possible. Then of course classical
structures like linked list don’t need a general addition, but can simply pop the first
element (term) from the list. This can be done in constant time. In fact only applying
this greedy technique to the case, where g is a monomial, already gives a quite good
normal form implementation in POLYBORI. Of course, it is a matter of heuristics to
decide, when it might be better only to perform a single reduction step.

12

5.3. Grobner Basis

The first real Grobner basis algorithm implemented in POLYBORI is an enhanced and
specialised variant of the slimgb (Brickenstein, 2006), which was implemented first in SIN-
GULAR. Slimgb is a Buchberger algorithm, which was designed to reduce the intermediate
expression swell. In particular it features a good strategy for elimination orderings (e. g.
lexicographical orderings) using a special weighted length function, which not only con-
siders the number of terms of a polynomial, but also their degree. We will concentrate
in the presentation of the results on Grobner bases computations, as there exists a large
example set and it is a task, which is very optimised in many systems.

5.8.1. Implementation Tricks

The availability of ZDDs for set operations can also used for other things than poly-
nomial representation. For instance, having a polynomial p, search for polynomial ¢ in
your generations with the property, that Im(gq) divides lm(p) can be implemented using
set operations in the following way:

Algorithm 8 Search for reductor

Require: G Tuple of generating polynomials, each one has a different leading term, set
of leading terms S, lm2p map (which maps a leading term to the corresponding ideal
generator), polynomial p # 0
S :={lm(g)|g € G}
lm2p : S — G /* map back leading terms to polynomials */
t .= {s € S|s divides lm(p)} /* this last step can be implemented as a single ZDD
Operation */
D := {lm2p(s)| for s € t}
return D

This presented algorithm is supposed to be much faster than linear search, under the
following (sensible) assumptions
S is big
each leading term in S is unique
m has quite small degree compared to the number of variables
D is small
a call of Im2p has complexity O(log,(#5S))
Im2p is precomputed
This follows the general principle, first to minimise the set of considered leading terms
via set operations, then access the actual polynomial via a hash lookup. You can also
use a similar technique, when applying the product criterion. There are many other
possibilities to use the ZDDs for improving Grébner basis computations.

5.8.2. Criteria

Criteria for keeping the set of critical pairs in the Buchberger algorithm small are
central part of Grobner basis algorithms. In most implementations the chain criterion
and product criterion or variants of them are used.

These are of quite general type. This leads to the question, whether we can formulate
new criteria for our particular case. There are two types of pairs to consider: Boolean
polynomials with field equations, and Boolean polynomials with each other. We concen-
trate on the first kind of pairs here.

13

Theorem 5. Let f be a Boolean polynomial in Zs[xy,...,2,], f =1-g, 1 a polynomial
with linear leading term x;, g a polynomial. Then spoly(f,z? + ;) has a nontrivial t-
representation against the system consisting of f and the field equations.

Proof. First, we consider the case g = 1. In this situation the following formula holds:
Im(f) = x;. Let r be a reduced normal form of spoly(f,z? + x;) against f and the
field equations. Then r is (tail) reduced, so it is a Boolean polynomial and irreducible
against f, so x; does not occur. In particular considered as a Boolean function it is
independent from the value of x;.

Since r is a linear combination of f and field equations (which are zero considered as
Boolean functions) we get:

r(Z1,...,2n) =1= f(z1,...,2,) = 1.

Now, we assume that r # 0. As a nonzero Boolean polynomial corresponds to a nonzero
Boolean function, we know, that there exist vq,...,v, € {0,1}, s.t. g(v1,...,v,) = 1.
The above implication gives, that f(vy,...,v,) = 1.

Then we can change the value of x; without affecting the value of r

r(vi,.. v+ 1,000 0,) =1,
but

flor,..,vi+1,...,0,) =0,
as x; only occurs in the one term x; of f. This contradicts the above implication between
r and f. So r = 0 and spoly(f,z? + x;) has a standard representation.

Now, we consider a general Boolean polynomial g. spoly(l,z? + ;) has a standard
representation against [and the field equations:

spoly(l, z? + x;) = Zhj ~x?+xj +a-l,
j=1
for polynomials o, h; (j € {1,...,n}):
a3 -1m(h;) < lm(spoly(l, z} + ;) < a7, Im(a-z;) < xj.

We multiply this equation by g and get by that fact, that z; does not occur in g:

spoly(l - g, @} + x;) =spoly(l - g, g - &7 + x;) — tail(g) - («7 + ;)
=g -spoly(l,z? + x;) — tail(g) - (7 + x;).

Using the standard representation for spoly(l, z7+x;) from above, both summands have a
t-representation for a monomial t < z2-lm(g), so we also get a nontrivial t-representation
in the sum. O

Remark 6. The polynomials [and g are indeed Boolean polynomials, as a Boolean
polynomial only factors in Boolean polynomials (this can be seen using degree formulas).
Together with the product criterion, we get, that we have only to consider pairs of Boolean
polynomials f with field equations for variables x, which do not occur in an irreducible
nonlinear factor of f. In the above proof, we make use of the fact, that we only consider
well orderings, when claiming, that z; does not occur in the tail of f.

14

5.4. Grobner Proof System

The Grobner proof system (Clegg et al., 1996) is a combination of backtracking for
calculation. Traditional SAT-solvers using backtracking split a logical expression into
clauses, which have to be satisfied simultaneously (Kunz et al., 2002). The algorithm
works the following way. On each level of the calculation a value for a chosen variable
is plugged in. If even a single clause is unsatisfiable, then the system is obviously un-
satisfiable. Then the other branch (the chosen value of the opposite variable) has to be
checked.

The Grobner proof system works similar to these classical SAT-solvers. The difference
is, that the criterion for a system to be obviously unsatisfiable is that a run of the
Buchberger algorithm with degree bound yields one (so the ideal is the whole ring). This
algorithm has been implemented in a first experimental version. It will be a challenge for
the future to find good strategies and heuristics for this very high level algorithm.

6. Results

This section presents some benchmarks comparing POLYBORI to general purpose and
specialised computer algebra systems. Note, that it only presents the state of POLYBoRI
in the development version at the end of December 2006. Since the project is very young
we can expect major performance improvements for sure in the near future.

The following timings have been done on a AMD Dual Opteron 2.2 GHz (all systems
have used only one CPU) with 16 GB RAM on Linux.

The used ordering was lexicographical ordering. POLYBORI also implements degree
ordering, but for the presented practical examples elimination orderings seem to be more
appropriate. A recent development in POLYBORI was the implementation of block or-
derings, which behave very natural for many examples.

We compared the following system releases

MAGMA 2.13-8, command: GroebnerBasis, default options

PoryBoR1 CVS Dez 06, slimgb with default options

Singular 3-0-3 (beta): slimgb, option(redTail) analogous to the default in PoLyBoR1
Maple 10.06 : Grobner package, default options

We also tried the Maple interface to FGb (Faugere, J.-C., 2006), but the documenta-
tion didn’t provide a way to use the lexicographical ordering, which we consider to be
an appropiate ordering for these problems. Using a degree ordering in FGb we got worse
results. In the spirit of a fair competition, we decided not to include FGb in our tables.

The examples were chosen from current research problems in formal verification and
algebraic crypto analysis.

The basis for AES (small scale) attack was provided by Stanislav Bulygin (private
communication). We made some optimisations on the formulation of the equations on
it. The CTC example is due to Martin Albrecht (Albrecht, M., 2006). The systems
describing the formal verification of multipliers were provided by Markus Wedler (private
communication).

All timings of the computations are summarised in Table 1 below.

15

Example Vars./Egs. PoLyBoR1 SINGULAR Macma Maple
ctc-5-3 189 354 3.04s 49 MB 32s 69 MB 83s 64 MB >1800s >89 MB
ctc-8-3 297 561 4.8s 52 MB 117s 154 MB 817s 335 MB

ctc-15-3 549 1044 8.04s 69 MB 748 s 379 MB >3000s >570 MB

aes-10-1-1-4pp 164 184 0.14s * 0.25s 0.92s 9.25 MB >1000s
aes-7-1-2-4pp 204 255 3.24s 50 MB 18s 366s 211 MB

aes-10-1-2-4pp 288 318 6.7s 51 MB 1080s 694 MB 1007 s 476 MB >70h >324 MB
multdx4 55 48 0.01s * 0.01s 0.7MB 0.91s 10MB 0.99s 9.8 MB
mult5x5 83 84 0.022s * 0.03s 0.7 MB 31.5s 44 MB 23.89s 16 MB
mult6x6 117 106 0.047s * 0.169s 2.9MB 4582 1044 MB

mult8x8 203 188 1s * 106 s 153 MB

mult10x10 313 294 2.5 min 86 MB

* too short to trace memory usage

Table 1. Timings and memory usage for benchmark examples

The authors of this article are quite convinced, that the default strategy of MAGMA
is not well suited for these examples (walk, see Collart et al. (1997), or homogenisation).
However, when we tried a direct approach in MAGMA, it ran very fast out of memory (at
least in the larger examples). So we can conclude, that the implemented Grobner basis
algorithm in POLYBORI offers a good performance combined with low memory consump-
tion. Part of the strength in directly computing Grobner bases (without walk or similar
techniques) is inherited from the slimgb algorithm in SINGULAR. On the other hand our
data structures provided a fast way to rewrite polynomials, which might be of bigger
importance than sparse strategies in the presented examples.

While we used the normal slimgb algorithm for the presented examples, we were able
to tackle much harder problems like 12BIT-Multiplier, AES small scale chiffre SR(10-1-
2-8), SR(10-2-1-8), SR(10-2-2-4) using optimised scripts.

In this way the initial performance of POLYBORI seems to be very promising. It can
be seen, that the advantage of POLYBORI grows with the number of variables. For many
practical applications this size will even be bigger. We are very confident, that it will be
possible to tackle some of these problems in future by using more specialised approaches.
This is a key point in the development of POLYBORI to facilitate problem specific, high
performance solutions.

Acknowledgements

This work has been partly financed by the Deutsche Forschungsgemeinschaft (DFG)
under Grand No. GR 640/13-1, and it has been supported by the Rheinland-Pfalz cluster
of excellence Dependable Adaptive Systems and Mathematical Modelling (DASMOD). In
addition, the authors thank Prof. Gert-Martin Greuel and Prof. Gerhard Pfister (both
Department of Mathematics, University of Kaiserslautern, Germany) for their encour-
agement.

16

References

Albrecht, M., 2006. Algebraic Attacks on the Courtois Toy Cipher. Diplomarbeit, Uni-
versitat Bremen.

Bachmann, O., Schénemann, H., 1998. Monomial Representations for Grobner Bases
Computations. In: Proc. of the International Symposium on Symbolic and Algebraic
Computation (ISSAC’98). ACM Press, pp. 309-316.

Becker, T., Weispfennig, V., 1993. Grobner bases, a computational Approach to Com-
mutative Algebra. Graduate Texts in Mathematics, Springer Verlag.

Bérard, B., Bidoit, M., Laroussine, F., Petit, A., Petrucci, L., Schoenebelen, P., McKen-
zie, P., 1999. Systems and software verification: model-checking techniques and tools.
Springer-Verlag New York, Inc., New York, NY, USA.

Bosma, W., Cannon, J., Playoust, C., 1997. The Magma algebra system I. Journal of
Symbolic Computation, 24, 3/4, 235-265.

Brickenstein, M., 2006. Slimgb: Grébner Bases with Slim Polynomials. In: Rhine Work-
shop on Computer Algebra. pp. 55-66, proceedings of RWCA’06, Basel, March 2006.

Buchberger, B., 1985. A Criterion for Detecting Unnecessary Reductions in the Con-
struction of a Grobner Basis. In: Bose, N. K. (Ed.), Recent trends in multidimensional
system theory.

Buchberger, B., 1965. Ein Algorithmus zum Auffinden der Basiselemente des Restklassen-
rings nach einem nulldimensionalen Polynomideal. Dissertation, Universitdt Innsbruck.

Cid, C., Murphy, S., Robshaw, M., 2005. Small Scale Variants of the AES. Fast Software
Encryption - FSE2005, LNCS 3557, 145-162.

Clegg, M., Edmonds, J., Impagliazzo, R., 1996. Using the Groebner basis algorithm to
find proofs of unsatisfiability. pp. 174-183.

Collart, S., Kalkbrener, M., Mall, D., 1997. Converting Bases with the Grébner Walk.
Journal of Symbolic Computation, 24, 465—469.

Coudert, O., Madre, J. C., 1992. Implicit and incremental computation of primes and
essential primes of Boolean functions. In: Design Automation Conference. pp. 36-39.

Courtois, N., 2006. How fast can be algebraic attacks on block ciphers? Cryptology ePrint
Archive, Report 2006/168.

URL http://eprint.iacr.org/2006/168.pdf

Faugere, J.-C., 2003. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryp-
tosystems Using Grobner Bases. In: Advances in Cryptology - CRYPTO 2003, Lecture
Notes in Computer Science 2729/2003. pp. 44-60.

Faugere, J.-C.; 1999. A new Efficient Algorithm for Computing Grobner Bases (Fj).
Journal of Pure and Applied Algebra 139 (1-3), 61-88.

Faugere, J.-C., 2006. FGb/Maple interface.

URL http://fgbrs.1lip6.fr/salsa/Software/

Ghasemzadeh, M., Nov. 2005. A new algorithm for the quantified satisfiability problem,
based on zero-suppressed binary decision diagrams and memoization. Ph.D. thesis,
University of Potsdam, Potsdam, Germany.

URL http://opus.kobv.de/ubp/volltexte/2006/637/

Giovini, A., Mora, T., Niesi, G., Robbiano, L., Traverso, C., 1991. One sugar cube, please
or Selection strategies in Buchberger algorithms. In: Watt, S. (Ed.), Proceedings of the
1991 International Symposium on Symbolic and Algebraic Computations, ISSAC’91.
ACM press, pp. 49-54.

17

Greuel, G.-M., Pfister, G., Schonemann, H., 2005. SINGULAR 3.0. A Computer Algebra
System for Polynomial Computations, Centre for Computer Algebra, University of
Kaiserslautern.

URL http://www.singular.uni-kl.de

Greuel, G.-M. and Pfister, G., 2002. A SINGULAR Introduction to Commutative Alge-
bra. Springer Verlag.

Hachtel, G. D., Somenzi, F., 1996. Logic Synthesis and Verification Algorithms. Kluwer
Academic.

Kunz, W., Marques-Silva, J., Malik, S., 2002. SAT and ATPG: Algorithms for Boolean
decision problems, 309-341.

McMillan, K. L., 1993. Symbolic Model Checking. Kluwer Academic Publishers, Norwell,
MA, USA.

Minato, S., Mar. 1995. Implicit manipulation of polynomials using zero-suppressed BDDs.
In: Proc. of IEEE The European Design and Test Conference (ED&TC’95). pp. 449
454.

Rossum, G. V., Drake, F. L., November 2006. The Python Language Reference Manual.
Network Theory Ltd., Bristol, United Kingdom.

Somenzi, F., 2005. CUDD: CU decision diagram package. University of Colorado at
Boulder, release 2.4.1.

URL http://vlsi.colorado.edu/ fabio/CUDD/

Stepanov, A. A., Lee, M., 1994. The Standard Template Library. Tech. Rep. X3J16/94-

0095, WG21/N0482.

18

