Project NSF-CNRS-NSERC LINBox*

The LINBOX team?

July 6, 2006

Home: http://linalg.org; documentation: http://linalg.org/docs.html;
package: http://linalg.org/download.html; online computing servers: http:
//linalg.org/servers.html.

1 LinBox

LinBox is a C++ template library of routines for solution of linear algebra
problems

Matrices Functions
integer entries solve linear system
rational entries matrix rank
finite field entries determinant

minimal polynomial
Sparse characteristic polynomial
Dense Smith normal form
Structured trace

A good collection of finite field and ring implementations is provided, for use
with numerous black box matrix storage schemes.

2 Project Goals

Genericity and high performance are the twin goals of LINBoX. The genericity
is achieved by use of a small set of interfaces. Algorithms are implemented with

*Ecole Normale Supérieure de Lyon, Institut National Polytechnique de Grenoble North
Carolina State University, Université de Grenoble, University of Calgary, University of
Delaware, University of Waterloo.

flinbox@yahoogroups.com

C++ template parameters which may be instantiated with any class adhering
to the specified interface. High performance is achieved by judicious specializa-
tions of the generic algorithms. It is entirely within the spirit of the project to
introduce new implementations. Thus a user of the library may invoke a LIN-
Box algorithm, say for determinant or rank of a matrix, but providing a black
box class of her own design and perhaps even providing the underlying field
(or commutative ring) representation. Conversely, the LINBox field and ring
interfaces and the many specific representations can be used for purposes other
than linear algebra computation or with algorithms not provided by LINBOX.

Three major threads have come together to form the linear algebra library
LiNBox. The first is the use of modular algorithms when solving integer or
rational matrix problems. The second thread and original motive for LinBox
is the implementation of black box algorithms for sparse/structured matrices.
Finally, it has proven valuable to introduce elimination techniques that exploit
the floating point BLAS libraries even when our domains are finite fields. The
latter is useful for dense problems and for block iterative methods.

Black box techniques [4] are enabling exact linear algebra computations of a
scale well beyond anything previously possible. The development of new and
interesting algorithms has proceeded apace for the past two decades. It is time
for the dissemination of these algorithms in an easily used software library so
that the mathematical community may readily take advantage of their power.
LiNBoX is that library [3].

Exact black box methods are currently successful on sparse matrices with hun-
dreds of thousands of rows and columns and having several million nonzero
entries. The main reason large problems can be solved by black box methods
is that they require much less memory in general than traditional elimination-
based metshods do. This fact is widely used in the numerical computation area.
We refer for instance to the templates for linear system solution and eigenvalue
problems [1]. This has also led the computer algebra community to a consid-
erable interest in black box methods. Since Wiedemann’s seminal paper [5],
many developments have been proposed especially to adapt Krylov or Lanczos
methods to fast exact algorithms. We refer to [2] and references therein for a
review of problems and solutions.

LiNnBox supplies efficient black box solutions for a variety of problems including
linear equations and matrix normal forms with the guiding design principle of
re-usability. The most essential and driving design criterion for LINBOX is that
it is generic with respect to the domain of computation. This is because there are
many and various representations of finite fields each of which is advantageous
to use for some algorithm under some circumstance. The integral and rational
number capabilities depend heavily on modular techniques and hence on the
capabilities over finite fields. In this regard, generic software methodology is a
powerful tool.

Using examples from demanding applications (Trefethen’s one hundred digits
challenge, signature of a matrix arising in Lie group representation, Smith form
for simplicial homology, determinants for combinatorial identities, characteristic
polynomials in the study of graph properties, etc.), we have demonstrated four
general levels of use of our library. In order from least involved with the details
to most involved, they are:

1. Access using a linbox web server.

The user at this level must attend to preparation of a matrix in a suitable
file format and invoking the service. The server itself provides adequate
documentation for this.

2. Access using already compiled functions or through an interface to linbox
in a general purposes system such as Maple or GAP.

The user at this level must see to installation, and then attend to prepara-
tion of her matrix in a suitable file format and to the form of the program
or procedure invocation. A number of programs are available in the ex-
amples directory distributed with LinBox providing for rank, determinant,
linear system solution, etc.

3. Use of LinBox as a programmers library for exact linear algebra functions.

At this level a user must do at least the following:

(a) Choose a field or ring representation and construct a specific field or
ring object R.

(b) Choose a black box or matrix representation suitable to your data
and construct specific matrix A over R.

(¢) Call needed algorithm. The solutions directory is designed to support
this by providing functions with simple problem oriented interfaces
(rank(), det(), solve(), etc.), yet allowing some user control of algo-
rithm details. The programmer may be providing some of the parts
such as an application specific black box matrix class.

4. Power development.

Again, this is use of LinBox as a library, but with hands fully on the details.
The programmer at this level apparently needs the best opportunities
for high performance and is willing to use the more complicated internal
interfaces to get it. Direct calls to functions in the algorithms directory
and perhaps to related packages such as flas, ffpack, or other components
are being used.

3 A middleware

LiNBoX is designed to serve as a middleware product lying between basic soft-
ware tools and higher level systems as indicated in this picture.

Scientific Software

 Maple GAP | | MuPad

\ \\ // =

Object Interface LinBox Parallelism

ATLAS | | Givaro |

Specialized efficient libraries

I/

3.1 LinBox (middleware) uses

e GMP for basic large integer arithmetic

e ATLAS (or similar source) for BLAS and Lapack routines. These floating
point functions are used judiciously for fast, exact computation.

e NTL for some finite field and ring representations, particularly in the case
of GF(q), where q is a prime power or a prime greater than word size.
NTL is also used by algorithms that need polynomial operations such as
factorization.

e Givaro as another source of field representations and polynomial opera-
tions. Importantly, Givaro provides our best representation of small non-
prime fields, say ¢ = p® < 10°.

e Functionality from some other systems has been wrapped also but is cur-
rently less widely used.

3.2 LinBox (middleware) is used by

e web servers, providing the main matrix functions (rank, det, solve, min-

poly,

...) for integer matrices and matrices mod a prime.

e GAP Homology package, providing Smith form and homology of simplicial
complexes.

4 LinBox library organization

The distributed package directory contains subdirectories (documented as ‘mod-
ules’) as follows.

e linbox. This contains the library sources (headers). The defined objects
are in the namespace LinBox.

linbox/field, field and ring representations.

linbox/blackbox, matrix blackbox representations providing matrix-
vector product..

linbox/matrix, mutable sparse and dense matrices.

linbox/algorithms, black box and elimination algorithms. This is
the heart of LINBOX.

linbox/solutions, convenience wrappers of algorithms

linbox/util, basic integers, timer, commentator.

e examples, model programs for direct use and/or illustration.

doc,

html documentation built using Doxygen.

e interfaces, interfaces to other systems.

e tests, primarily consisting of correctness checks.

5 Usage example: the determinant

Let us illustrate the use of LINBOX with two simple variations on code to com-
pute a determinant.

5.1 Determinant of a sparse matrix over a small finite
field, via a Blackbox method

#include <linbox/field/modular.h>
#include <linbox/blackbox/sparse.h>
#include <linbox/solutions/det.h>
main(){
// types

typedef LinBox::Modular<double> Field;

typedef LinBox::SparseMatrix<Field> Matrix;
// objects

Field F(65521);

Matrix AC F);

A.read(std::cin);

Field::Element d;

// action

LinBox::det(d, A, LinBox::Method: :Blackbox());

F.write(std::cout << "the determinant is ", d) << std::endl;
}

5.2 Determinant of an integer dense matrix, via BLAS
optimized routines

#include <linbox/field/gmp-integers.h>
#include <linbox/blackbox/dense.h>
#include <linbox/solutions/det.h>
using namespace LinBox; using namespace std;
main(){
// objects
GMP_Integers ZZ; int n = 1000;
DenseMatrix<GMP_Integers> A(ZZ, n, n);
for (int i = 0; 1 < n; ++i)
for (int j = 0; j < nj; ++j)
A.setEntry(i, j, 1 + ixj);
GMP_Integers::Element d;
// action
cout << "the determinant is ";
ZZ.write(cout, det(d, A)) << endl;

32768

1024

Time (s)

32

[Storjohann-Giorgi—Olesh] (Certified) m—

Magma V2.11-2 (Monte Carlo)
LinBox Hybrid algorithm s

512 1024 2048 4096 8192
n

Figure 1: Comparison of determinant with other existing implementation.
Tested on random dense matrices of the order 400 to 10000, with entries {-
8,-7,...,7,8}

5.3 Performance measurements

We conclude with some timings of determinant computation by LINBOX and
some other packages. These measurements were made in 2005 on an Itanium 2
running at 1.3Gh. The horizontal (matrix size) and vertical (time) scales are
logarithmic.

References

[1] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for the
Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Ed.
SIAM, 1994.

[2] L. Chen, W. Eberly, E. Kaltofen, B. Saunders, W. Turner, and G. Villard.
Efficient matrix preconditioners for black box linear algebra. Linear Algebra
and its Applications, 343-344:119-146, 2002.

[3] J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen, E. Kaltofen,
B. D. Saunders, W. J. Turner, and G. Villard. LinBox: A generic library for
exact linear algebra. In A. M. Cohen, X.-S. Gao, and N. Takayama, editors,
Proceedings of the 2002 International Congress of Mathematical Software,
Beijing, China, pages 40-50. World Scientific Pub, Aug. 2002.

[4] E. Kaltofen and B. Trager. Computing with polynomials given by black
boxes for their evaluations: Greatest common divisors, factorization, sep-

aration of numerators and denominators. J. Symb. Comp., 9(3):301-320,
1990.

[5] D. Wiedemann. Solving sparse linear equations over finite fields. IEEE
Transf. Inform. Theory, IT-32:54-62, 1986.

