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Fermat is an interactive system for mathematical experimentation. It is a super calculator -- computer
algebra system, in which the basic items being computed can be rational numbers, real numbers, complex
numbers, elements of finite fields, multivariable polynomials, multivariable rational functions, or
multivariable polynomials modulo other polynomials. Fermat is available for Mac OS, Windows, Unix, and
Linux. It is shareware.

In Fermat, the basic ground ring is Z (and its field of fractions Q). One may choose to work modulo a
specified integer n, thereby in effect changing the ground field (or ground ring) F from Q to Z/n. The
ground rings GF(2^8) and GF(2^16) are also efficiently implemented. On top of this may be attached any
number of unevaluated variables t1, t2, ..., tn, thereby creating the polynomial ring F[t1, t2, ..., tn] and its
quotient field, the field of rational functions, whose elements are called quolynomials. Further, polynomials
p, q,... can be chosen to mod out with, creating the quotient ring F(t1, t2, ...)  / < p, q, ... > , whose elements
are called polymods. Finally, it is possible to allow Laurent polynomials, those with negative as well as
positive exponents. Once the computational ring is established in this way, all computations are of elements
of this ring.

Fermat has extensive built-in primitives for array and matrix manipulations, such as submatrix, sparse
matrix, determinant, normalize, column reduce, and matrix inverse. It is consistently faster than some well
known computer algebra systems - orders of magnitude faster in many cases.

Fermat has a complete programming language. Programs and data can be saved to an ordinary text file, read
during a later session, or read by some other software system.

Fermat has several features that enhance debugging. It is possible to interrupt Fermat. One can then examine
the state of the computation, and later resume it. Error diagnostics are very specific - much more so than in
some other systems, which struggle to tell you that an error has occurred somewhere before the last
semicolon.

Basic features - a simple example:

When the user invokes the system he sees the prompt character   >  ; the interpreter is waiting for a
command of some sort. The user could enter: 8+23 < return > , and the system responds immediately with
31, and the prompt character again. The user could enter any arithmetic expression following the usual
syntax, such as (8-3)*(178-96)/2 < return > . ( < return > means press the return key.)

Fermat always responds with a number after every user command. If there is no obvious number associated
with a command, it responds with 0. For example, the creation of an array or function yields a 0.



The result of a computation may be stored for later use. The syntax of " set x equal to 8+23" is

> x := 8 + 23            [blanks may be inserted for clarity]

31

Fermat ignores blanks inside long integer constants, as 222 333 444 = 222333444.

The name  x  may or may not have been used before. The user can now compute expressions in x, like

> y : = (x-29)*x - 60

2

If the formula is going to be used frequently, the user will want to give it a name, say  F:

> Function   F(t) = (t-29)*t - 60.

0           [0 is the computed result of a function definition]

The t is called a formal parameter or just parameter. Any number of parameters is allowed.

The user can now enter commands like

> y : = F(x)

2

Notice that F(31) has been computed, stored in y, and the answer displayed.

> F(27+y+1)

-30

Here F(30) has been computed and displayed, but not stored anywhere by the user. The latest computed
result arising from a terminal command is stored in the system variable, where it can be accessed, until a
later result supplants it. 
Computed values and function definitions can be saved from one session to the next. They are stored in an
ordinary text file that can be edited with an ordinary editor.

Fermat is command-line oriented. Type a line, then press the return key at the end. You may enter long
commands that occupy more than one line by putting the continuation character ` on the end of each line
(except the last, of course).

Let's continue the example of a Fermat session. Suppose the user has a file of previously saved data called "
stuff". He uses the imperative read command

> &(R = stuff)

to open the file for reading and bring the data into this session. Suppose there is a 3 X 3 matrix [x]. To see



it, he can use the short form of array display,

> ![x

which results in

>[x] := [[  1,     3, 12,   
                 2,   7, -5,  
                 0,   24, -4   ]]

To compute the determinant the command is

> Det[x]            [   and the result is:]

692

The user decides to compute the characteristic polynomial of [x]. First he adjoins a polynomial variable t:

> &J

Change of polynomial variable.            [Fermat prompts for the name.]

Enter variable name:

> t

The user subtracts the variable t from every element in the main diagonal. This is done with:

> [y] : = [x] - [t]            [  [t] means a diagonal matrix, 3 X 3 since [x] is.]

Just to look at it, he displays [y]:

> ![y
> [y] : = [[  -t+1,      3,  12,  ,, 
                 2,    -t + 7,  -5,  ,, 
                 0,    24,  -t - 4   ]] 

Then invoking determinant computes the desired polynomial:

> w : = Det[y]

-t3 + 4t2 - 89t + 692

(There is a built-in function Chpoly to quickly compute characteristic polynomials in Fermat.)

To check the Cayley-Hamilton Theorem, the user decides to evaluate this polynomial at the matrix [x],
using the built-in command # for polynomial evaluation:

> w # [x]

[[  0,   0, 0,  



    0,   0, 0,  
    0,   0, 0   ]]

The user decides to change the ground ring from the present Z[t] to Z[t]/ < t2+1 > . He gives the imperative
form of the mod-out-by-polynomial command

> &(P = t2 + 1, 1)

The extra "1" tells Fermat that t2+1 is irreducible, so an integral domain results. Then the command

> 1/(t+1)        yields:

(-t+1)/2

Everything will be saved to the file 'stuff2', via the save command(s):

> &(S = stuff2)

> &s

The user now exits:

> &q

bye

Summary of Matrix and Polynomial Features

Matrix and polynomial computations are the heart of Fermat. Here is a concise annotated list of relevant
features and commands. Most are explained further in the full manual, on line at
http://www.bway.net/~lewis
We do not discuss here programming in Fermat.

Polynomials
Recall that most built-in functions allow call-by-reference for parameters. For example, time and compare
Terms(x) and Terms(^x) for a large x.

Adjoin polynomial variable: use the command &J (Fermat interrogates user for name), or &(J = t)
(imperative to adjoin t).

Cancel (delete) polynomial variable: similar to above, &(J = - t).

Quotient rings and fields: One may choose to mod out by some of the polynomial variables to create
quotient rings (or fields). The chapter on "Polymods" describes how. In principle, any monic polynomial
may be modded out, say tn + c1tn-1 + .... 



However, Fermat is best at the case where the quotient ring becomes a field (note well, Q[t, u, ...]  / < p, q,...
> is a field, Z[t, u, ...]  / < p, q, ... > is not). Specifically, suppose the polynomial variables have been
attached in the temporal sequence t, u, v, .... Begin by modding out a monic irreducible polynomial p(t) such
that F1 = Z[t]/ < p > is an integral domain, and its field of fractions is Q[t]/ < p > . Then, if desired, mod
out by a monic polynomial q(u,t) such that F2 = F1[u]/ < q > is an integral domain, and continue in this
manner always creating an integral domain, and, by the same stroke, its field of fractions.

You must tell Fermat that a field will result, and it is your responsibility to check this. Do this at each step
by adding a comma and 1, as &(P = tn + c1tn-1 + ..., 1). You may append a list of primes q such that the
modder p(t) remains irreducible mod q. For example, &(P = t3 + t2 + t + 2, 1:151, 167, 191, 839, 859, 863,
907, 911, 991). If you omit the list Fermat will compute it for you. (This takes a while, so if you save the
session to a file, Fermat will include the list in the saved file and just reload it next time.) Fermat then
computes a second list of auxiliary primes: modulo these primes the modding polynomial has a root. Both
types of primes are used to speed up g.c.d. computations. If Fermat cannot find enough of either type, it will
tell you and instruct you how to get more, using the commands &A and &B.

In all of the above the base field is Q. To make a finite field, first do the above then go into modular mode
with &(p = some prime n), where the prime n and the polynomials p, q, ... have been chosen so that Z/n[t, u,
...]  / < p, q, ... > is a field.

Laurent Polynomials: a polynomial with negative exponents. To allow this, activate the toggle switch &l.
All of the variables you have created up to that point will be converted so that no negative exponents are in
the denominator of a quolynomial and all positives are factored out and moved to the numerator. For
example, 1/(t2+2t) will become t-1/(t+2).

Basic arithmetic: +,  -,  *,  /,  |,  \, ^. p/q creates a rational function ("quolynomial") unless q divides evenly
into p. In any event, GCD(p,q) is computed and divided into p and q. p|q means p mod q and p\q means p
div q, i.e. divide and truncate.

Mod and div may be "pseudo" results: if c is the leading coefficient of q and is not invertible, there exist
polynomials r and y such that ck p = y q + r, where 0 £ k £ deg(p) + deg(q). Fermat chooses the smallest
possible k. p|q is r and p \q is y.

Remquot = remainder and quotient. Syntax is Remquot(x,y,q). q gets the quotient of dividing x by y and the
function returns the remainder. Almost twice as fast as calling mod and div separately. Pseudo-remainder
and quotient will be returned if necessary.

Deg. degree of a polynomial (or quolynomial). There are three variants: (1) Deg(x) computes the highest
exponent in x (any expression) of the highest precedence polynomial variable. (2) Deg (x, i) computes the
highest exponent in x of the ith polynomial variable, where the highest level variable has the ordinal 1. (3)
Deg (x, t) computes the highest exponent in x of the polynomial variable t. In modular mode, Deg returns
an actual integer, not reduced modulo the modulus. For a quolynomial, it returns the degree of the
numerator.

Codeg; "codegree," just like Deg except it computes the lowest exponent.

# = polynomial evaluation. x#y replaces the highest precedence variable everywhere in x with y. x#(u = y)
replaces the variable u with y. x and y could be quolynomials. 
There is a fast shortcut form of evaluation called total evaluation. To evaluate x at every variable, use the
syntax x#(v1, v2, ...), where all the vi are numbers. There must be a number corresponding to each



polynomial variable, in the precedence order - highest precedence (last attached) first. 
Fermat also allows evaluation of polynomials at a square matrix. The syntax is x#[y]. The highest
precedence polynomial variable in x is replaced with the matrix [y] and the resulting expression simplified.
[y] can contain entries that are quolynomials. 
The following much more general syntax is allowed. Suppose there are five poly vars, e, d, c, b, a in that
order (e last and highest). Then q#(d = w,x,y) will replace each d in q with w, each c with x, each b with y.
e and a are untouched. Further, w, x, and y can be arbitrary quolynomials. One can also evaluate at an array
of values, via q#(d = [x])

Numb = is the argument a number (as opposed to a polynomial or quolynomial)? If so the result is 1, else
it's 0.

Numer = numerator of a quolynomial. In rational mode, also gives the numerator of a rational number.

Denom = denominator of a quolynomial. In rational mode, also gives the denominator of a rational number.

Coef in a polynomial (or quolynomial): 
(1) Suppose first that only one polynomial variable t has been adjoined. Then the syntax of use is either
Coef(x) or Coef(x, n). x can be any expression. n, the desired exponent, must be a number. In the first form,
without n, the leading coefficient is computed. Coef(x, n) returns the coefficient of tn in the polynomial x. If
x is a quolynomial, the denominator is ignored. 
To replace a coefficient, use Rcoef(x, n) : = y; the coefficient of tn in x will be set to the expression y. y
must be a number. 
If there are several polynomial variables, the coefficient desired is specified by listing the exponents of the
variables in precedence order, such as Coef(x, 1, 2). 
In Rcoef(x, ...) = y, x must be a polynomial and ... must be suitable for y. 
(2) If t is any polynomial variable, Coef(x, t, n) computes the coefficient in x of tn, as if t were the highest
level variable. In other words, if x were written out as a sum of monomial terms, find all the terms
containing exactly tn and factor out the tn. x must be a variable name, either a scalar name or an array
reference x[i]. This form cannot be used on the left of an assignment. Especially useful for n = 0.

Killden(x) sets the denominator of x to 1.  It actually changes x.

Lterm(x) = leading term of polynomial x.

Lcoef(x) = leading numerical coefficient of polynomial x.

Flcoef(x) = leading field-element coefficient of polynomial x, when a quotient field has been created.

Lmon(z) = leading monomial of z. Lmon has an optional second argument. First, Lmon(z) returns the
leading monomial of z. This is always an authenic monomial. If you think of a multivariate polynomial in
nested (recursive) form, Lmon recursively finds the first term in each level and throws away all the other
terms. The result is clearly a monomial. Lmon(z, x), where x is a poly var, stops the recursion at the level of
x. For example, suppose u is the higher variable and t the lower variable. Let z = (t2 + 3t + 5)u2 + 5t*u + 7t
- 2. Then Lmon(z) is t2*u2 but Lmon(z, t) is (t2 + 3t + 5)u2. This allows one to have lower variables of a
different " status," as if the lower variables are "parameters" and the upper ones are the "real" variables.

Mcoef(x, m1, m2) = monomially-oriented coefficient. m1 (and m2 if present) must evaluate to a monomial;
their numerical coefficient is irrelevant. Factor out m1 from all the terms in x that contain it exactly, and
return the factor. m2 (optional) specifies variables that must occur with exponent 0 (they cannot be included



in m1!).

Mfact(x, m) = monomially-oriented factor. m must evaluate to a monomial; its numerical coefficient is
irrelevant. Factor out m from all the terms in x that it divides into and return the factor. m may not contain
any negative exponents.

Mons(x, [a]) dumps the monomials of x into a linear array [a]. If you want each monomial stripped of its
numerical coefficient, use Mons(x, [a], 1).

PRoot(x) returns the pth root of x, when x is in the ground ring, a field of characteristic p.

Terms(x) = if x were written out as a sum of monomial terms, the number of such terms. x must be a
variable name, either a scalar name or an array reference x[i].

&_l: Display each polynomial as a list of monomials.

&c: Enable full Hensel checking; rather technical. If this flag is on (the default) Fermat will double-check
the results of certain Hensel Lemma GCD computations. Leaving it off will slightly speed up GCD but
introduce an extremely minute probability of GCD giving the wrong answer. See &O next below.

&O: Toggle switch to disable the Hensel and Chinese Remainder Theorem (CRT) methods for polynomial
gcd. This is a good idea only when you are working over Zp for small primes, say p < 30, and the degrees in
each variable are fairly small. For such small primes, the Hensel and CRT methods often fail, for "lack of
room."

" = derivative of a polynomial (or quolynomial) with respect to the highest precedence variable (the last
attached), as in x" (see also Deriv below).

GCD = greatest common divisor, as in GCD(x,y), x and y can be numbers or polynomials, but not
quolynomials. If numbers, the result is always positive, except that GCD(0,0) = 0. GCD(0,x) = |x| if x is a
number not 0, and is 1 if x is a polynomial. If they are both polynomials, the result always has positive
leading coefficient. If in rational mode, not complex, the result is normalized to have all coefficients integral
and be of content 1. In cases where the ground ring is a field, the result has leading coefficient 1.

Content = content of a polynomial; i.e., the GCD of all its coefficients.

Numcon = numerical content, the GCD of all its numerical coefficients.

Var. Followed by an expression that evaluates to a positive integer, as in Var(i) returns the ith polynomial
variable, counting the highest (last created) as 1.

Height = the difference between the levels (ordinals) of the polynomial variables in an expression.

Level = the ordinal position of the highest precedence polynomial variable in an expression.

Raise = Two forms: Raise(x) and Raise(x, i). In the first, replace each polynomial variable with the variable
one level higher. The second form allows the user to provide an expression i that evaluates to a positive
integer, and raises x that many levels, if possible.

Lower = The inverse of Raise. See above.

Divides(n,m) = does n divide evenly into m?



PDivides(n,m) = does n divide evenly into m? When n and m are multivariable polynomials, this procedure
attempts to answer quickly by substituting each polynomial variable except the highest with a constant.
PDivides says true iff these reduced polynomials divide evenly. The constants are chosen with care.
Nonetheless, this is a probabalistic algorithm. An answer of False is always correct, but an answer of True
has an infinitesimal probability of being wrong.

SDivides(n,m) = does n divide evenly into m? " s" stands for " space-saving". To save space m is
cannibalized. If n does divide m, m becomes the quotient; if not, m becomes 0. m must be a variable name,
not an expression. Not probabalistic. Use when you are virtually certain that n divides m and you want the
quotient in the fastest way.

Powermod(x,n,m) computes xn  mod  m. x must be a polynomial or integer, n must be a positive integer,
and m must be a monic polynomial or positive integer. You may omit the third argument if you are in
modular mode or polymodding. Note that n often needs to be very large. In modular mode, this is a
problem. The solution is that n must be either a constant or must involve only variables that have been
created in rational mode while under " selective Mode Conversion."

Deriv(x, t, n) returns the nth derivative of x with respect to t, where t is one of the polynomial variables.

Totdeg(x, [a], n) returns the subpolynomial of x of total degree n in the variables listed in [a]. [a] is an
existing array. Each entry should be a single polynomial variable, in no particular order. n is an integer. x is
a polynomial; laurent is ok. &oe  is useful.

Factoring Polynomials: Fermat allows the factoring of monic one-variable polynomials over any finite
field. The finite field is created by simply being in modular mode over a prime modulus, or by additionally
modding out by irreducible polynomials to form a more complex finite field, as described in the section
"Polymods." Factoring into irreducibles or square-free polynomials is possible, or polynomials can just be
checked for irreducibility.

Factor( < poly > , [x]) or Factor( < poly > , [x], < level > ). The factors of < poly > will be deposited into
an array [x] having two columns and as many rows as necessary. (The number of factors (rows) is returned
as the value of Factor.) In each row, the first entry is an irreducible polynomial p(t) and the second is the
largest exponent e such that p(t)e divides < poly > . In the second form, < level > specifies the subfield to
factor over. Examples are given earlier in this manual. It is best for factoring to use as many variables t, u,
... as possible in creating the field.

Sqfree is similar to Factor except it produces factors that are square-free only.

Sqfree works for any number of variables and over Q. Also, it works recursively by first extracting the
content of its argument and factoring it. Over quotient fields, the product of all the factors in the answer
may differ from the argument by an invertible factor.

Irred tells if its argument is irreducible, and, if not, describes the factorization. The syntax is Irred( < poly >
) or Irred( < poly > , < level > ) ("level" is explained above). The value returned is as follows:

       -1 means can't decide (too many variables, for instance).

       0 means the argument is a number or a field element.

       1 means irreducible.



       n > 1 means the argument is the product of n distinct irreducibles of the same degree.

       x, a poly, means x is a factor of the argument (which is therefore not irreducible).

Fermat uses the algorithms of H. Cohen, " A Course in Computational Number Theory," Springer Verlag,
1993, p. 123-130. There is some randomness in the algorithms, so the time it takes to factor can vary.

Matrices
Creation: An n X m matrix is created with the command   Array  x[n,m]. Access elements in such an array
via x[i,j] or via x[k], which returns the kth element in column-major order. To refer to an entire matrix, use
the syntax [x].

Sparse Matrices: Sparse matrices are implemented in Fermat. This is an alternative mode of storing the data
of the array. In an " ordinary" n X m matrix, nm adjacent spots in memory are allocated. If an array consists
of mostly 0's, this is wasteful of space. In a Sparse implementation, only the non-zero entries are stored in a
list structure. 
A Sparse matrix is created by following the creation command with the keyword "Sparse," as in  Array
 x[5,5] Sparse. The only size limitation in Fermat is that the number of rows and the number of columns
must each be less than 228. An array [x] already created can be converted to Sparse format with the
command Sparse [x]. There is no requirement that [x] actually have a certain number of zeros. 

Indexing: One has a choice of how to index the first element of an array. The default in Fermat is x[1]. This
can be changed by entering the command &a, which switches the initial array index to 0. Entering &a again
switches back to 1. Note that this is not a property of any particular array, but of how all arrays are indexed.

Dynamic Allocation of Arrays: Arrays that are no longer needed can be freed to provide space for new
arrays. This is done with the cancel command, whose syntax is @[x], or, to free several, @([x],[y],[z]).

Arithmetic: Most of the ordinary arithmetic built-in functions can be applied to arrays. See Appendix 2, last
column. For example, [x] + [y] is the sum. 2*[a], or [a]*2, multiplies every component of [a] by 2. [a] + 3
adds 3 to every component of [a], and so forth. [a] : = [1] sets an already existing square matrix [a] equal
to the identity. [a] : = 1 sets every entry to 1. [z] : = [x] * [y] is the product. [z] : = 1 / [y] is the inverse.
Matrix exponentiation (including inverse) is just like scalars (but see Altpower below), such as [z] : = [x]^n.

Arithmetical Expressions: Like numerical expressions, such as [z] : = [a]*([x] + [y] - [1]).

Parameters: Matrices may be parameters in functions.

Subarrays: Fermat allows subarray expressions. That is, part of an array [c] can be assigned part of an array
[a]. For example, [c[1 ~ 4, 2 ~ 6]] : = [a] sets rows 1 to 4 and columns 2 to 6 of [c] equal to [a]. This
assumes that [a] is declared to be 4 X 5 and [c] is at least 4X 6. (Here ~ is shift-` ). In defining the
subarray, if one of the coordinate expressions is left out, the obvious default values are used. For example, if
[c] has four rows then [c[ ,2~ 6]] : = [a] is equivalent to the above. Similarly, one can use expressions like
[c[3~ , 2~ 6]] : = [a] or [c[~ 4, 2~ 6]] : = [a], in which case the default lower row coordinate is the array
initial index, 0 or 1. 
In subarray assignments, a vector declared to be one-dimensional (like a[5]) is treated as a column vector,
i.e., a[5,1]. 
Subarray cannot be used with Sparse matrices. But see Minors below.



Matrix Built-in Functions:

Det, is used in several ways to compute a scalar from an array argument. If used by itself on a square
matrix, Det is determinant. Det#([x] = a) returns the number of entries in [x] that equal a. Similarly
Det#([x] > a) and Det#([x] < a) compute the number of entries of [x] larger or smaller than a. If any entry
is a polynomial, an error results. Det^[x] returns the index of the largest element of [x] (in column major
order if [x] is a matrix). Det_[x] returns the index of the smallest element of [x]. Det_ + [x] returns the
index of the smallest nonzero element of [x], or -1 if there is no such element.

Determinant: Fermat uses five basic methods to compute determinant: expansion by minors, Gaussian
elimination, Gauss-Bareiss, LaGrange initerpolation, and reducing modulo n for some n's. The last of these
is used for matrices of integers or polynomials with integer coefficients. The actual determinant can be
reconstructed from its values modulo n (for a "good" set of n's) by the Chinese Remainder Theorem (see
Knuth volume 2). Alternatively, it is often possible to work modulo an easily computed "pseudo
determinant" known to bound the actual determinant. Gaussian elimination can be nontrivial and even
problematical in modular arithmetic over a nonprime modulus, in polynomial rings, and in polynomial rings
modulo a polynomial.

Fermat has heuristics to choose among the methods, but the user may override them and force a particular
method. Assuming an m X m matrix of all polynomial entries, if m is more than three and the user has left
&D = -1, the default method is Lagrangian interpolation, unless the "mass" of the matrix is very small. The
"mass" is estimated by a heuristic and compared to a cutoff. The user can change the cutoff with the
command &L. The default is 5000. Therefore, to turn off Lagrangian interpolation, give a very large value
(up to 231-1). To then choose Gauss-Bareiss, set the command &K = 1. This is a bit confusing, so
summary:

To force Gauss-Bareiss, set &K = 1 and &D = 2.

To force Gaussian elimination, set &K = 0 and &D = any d > 0. At the d X d stage, it will switch to
expansion by minors.

If m ≥ 4, to force Lagrangian interpolation, set &D = -1 and &L = 1.

LCM = the least common multiple of all the denominators in a matrix. "Denominators" means those of
rational numbers or of expressions like (t2 + 3t + 1)/17 or 3/(2t). Use this to clear a matrix of its integer
denominators. The denominator of 2/(3+2t) is ignored, since you can't clear it by multiplying [x] by any
number.

Adjoint = adjoint of a square matrix.

Chpoly = the characteristic polynomial of a square matrix. The syntax of the command and the method used
depend on whether the matrix is sparse or "ordinary." 

With the ordinary matrix storage scheme, LaGrange interpolation is used when the matrix consists of all
numbers. It is to your advantage to clear the matrix of all numerical denominators before invoking Chpoly.
When using the LaGrange interpolation method on integer matrices, Fermat computes the many necessary
determinants using the Chinese Remainder Theorem. To do so, it must make an initial estimate of the
absolute value of the determinant. The estimate is often rather liberal. The determinants in question are
simply f(ci), where f is the characteristic polynomial and { ci } is a set of " sample points." You, the user,
may be able to supply a far better bound on |f(ci)|. For example, you may have some estimate of the
location of the roots of f. For this reason, there is a second optional argument to Chpoly in Fermat, a



polynomial g such that |f(t)|<= |g(t)| for all t. The syntax is Chpoly([x], g). 

Minpoly: The "modifed Mills method," a fast probabalistic "black box" or Wiedeman algorithm that
computes the minimal polynomial M(t) of a sparse matrix of integers, or, more precisely, a factor of the
minimal polynomial. If one of the roots of M(t) is 0, the associated factor t of M(t) will not show up, but
other factors may not show up either. This algorithm is built into Fermat via the command Minpoly. Syntax
of use is Minpoly([a], level, bound). [a] is the matrix, which must be Sparse. level = 0, 1, 2,3, 4 is a switch
to tell Minpoly how much effort to expend in its basic strategy. Larger levels will take longer, but have a
better chance of giving the entire minimal polynomial. bound is an integer at least as big as any coefficient
in the minimal polynomial. This argument can be omitted, in which case Fermat will supply an estimate
based on the well-known Gershgorn's Theorem. 
Repeated calls to Minpoly may return different answers. It may be worthwhile to run it several times and
compute the l. c. m. of the answers.

Sumup = add up the elements of an array.

Trace = trace of a matrix.

Altmult. Multiply two matrices using the algorithm of Knuth volume II, p. 481. A big time saver when
multiplication in the ring is much slower than addition. Especially good for Polymods (see that chapter).
Syntax is Altmult([x],[y]).

Altpower. Uses Altmult to take a matrix [x] to the power n. Syntax is Altpower([x],n).

MPowermod([x], n, m) computes [x]^n mod m, analagously to Powermod. [x] contains only polynomials or
integers, n must be a positive integer, and m must be a monic polynomial or positive integer. You may omit
the third argument if you are in modular mode or polymodding. Note that n often needs to be very large. In
modular mode, this is a problem. The solution is that n must be either a constant or must involve only
variables that have been created in rational mode while under "Selective Mode Conversion." 

Trans = transpose matrix, as in [y] : = Trans[x].

Diag refers to the diagonal of a matrix, as in Diag[y]: = [x]. [x] is considered a linear array. The diagonal
of [y] becomes the entries of [x]. If the name [y] does not yet exist, a new square matrix will be created
with off-diagonal entries 0. If square matrix [y] of the right size (i.e., rows equal to the number of entries of
[x]) does exist then the off-diagonal elements are not changed.

Dually, Diag can be used on the right side of an assignment, as in [y] : = Diag[x], which sets [y] equal to a
linear array consisting of the diagonal elements of [x]. [x] does not have to be square. 
To create a diagonal matrix with all entries equal to a constant, say 1, you can use the easier form  [x] : =
[1], if [x] already exists as a square matrix.

Cols[x] = number of columns of array [x].

Deg = number of elements in an array. Deg[x] = total size of array [x] (rows X columns).

_ = concatenate arrays; glue two arrays together to form a larger one, as in [z] : = [x]_[y]. Neither array can
be Sparse.

Iszero = is the argument (an array) entirely 0? If so, return 1, else return 0. Syntax: Iszero[x].

Switchrow = Interchange two rows in an array. Syntax: Switchrow([x], n, m). 



Switchcol = Interchange two columns in an array. Syntax: Switchcol([x], n, m).

Normalize = convert to a diagonal matrix. The matrix must not be Sparse. If requested, Fermat will return
the change of basis matrices used in normalizing. Possible invocations include Normalize([x]) and
Normalize([x], [a], [b], [c], [d]). In the second case, matrices [a], [b], [c], and [d] will be returned that
satisfy [a]*[x ']*[b] = [x], where [x '] is the original [x], and where [c] = [a]-1 and [d] = [b]-1. The value
returned by Normalize is the rank of [x]. 
You can omit any of the change of basis matrices. For example, Normalize([x], ,[b], , [d]) and
Normalize([x], [a], , [c]). Every comma promises that an argument will eventually follow. 

Colreduce = Column reduce a matrix. The matrix may NOT be Sparse. By column manipulations, the
argument is converted to a lower triangular matrix. If requested, Fermat will also return the change of basis
(or conversion) matrices that it used in normalizing. Possible invocations include Colreduce([x]) and
Colreduce([x], [a], [b], [c], [d]). In the second case, matrices [a], [b], [c], and [d] will be returned that
satisfy [a]*[x¢]*[b] = [x], where [x¢] is the original [x], and where [c] = [a]-1 and [d] = [b]-1. The value
returned by Colreduce is the rank of [x]. As with Normalize, you can omit any of the change of basis
matrices. 
Colreduce cannot be used on sparse arrays (but see Rowreduce below). In addition a function Pseudet is
implemented. Pseudet([x]) computes (indirectly) a "pseudo-determinant," a nonzero determinant of a
maximal rank submatrix. It returns the rank of the matrix and leaves the matrix in diagonal form (so [x] is
changed). The product of the diagonal entries is (up to sign) the "pseudo-determinant." The optional form
Pseudet([x], [rc]) returns a 2 X rank[x] matrix [rc] specifying the rows (first row of [rc]) and columns
(second row of [rc])that constitute the maximal rank submatrix.

Rowreduce = Row reduce a matrix. The matrix must be Sparse. Exactly like Colreduce but for sparse arrays
and row reduction.

Smith = Put a matrix of integers into Smith normal form. The matrix may be Sparse. This function can only
be used in rational mode, and assumes that every entry is an integer. (Any denominator encountered will be
ignored, with unpredictable results.) By row and column manipulations, the argument is converted to a
diagonal matrix of non-negative integers. Furthermore, each integer on the diagonal divides all the
following integers. The set of such integers is an invariant of the matrix. 
As with Normalize, you can omit any of the change of basis matrices. 
If you do not require any conversion matrices then it is possible to greatly speed up Smith in most cases by
working modulo a "pseudo-determinant", a multiple of the gcd of the determinants of all the maximal rank
minors (see Kannan and Backem, SIAM Journal of Computing vol 8, no. 4, Nov 1979). Do this in Fermat
with the command MSmith. On the other hand, for relatively small matrices or sparse matrices, it's faster to
forgo the modding out. Fermat will compute the pseudo-determinant if the matrix is Sparse. If you already
have a pseudo-determinant pd to use, use the syntax MSmith([x], pd). (If the matrix is not Sparse, you must
use the latter method. Pseudet may be helpful.)

Hermite = Column reduce a matrix of integers. The matrix may be Sparse. This function can only be used
in rational mode, and assumes that every entry is an integer. By column manipulations and row
permutations, the argument is converted to a lower triangular matrix of integers. All diagonal entries are
non-negative. This is often referred to as Hermite normal form. 
If requested, Fermat will also return the integer change of basis (or conversion) matrices used in
normalizing, exactly as in Smith.

Redrowech = the reduced row echelon form, for elementary matrix equations of the form AX = B. (Other
Fermat commands do column manipulations as well, which could be used to solve AX = B but take an extra
step.) Invoke with Redrowech([a]), where all columns but the last in [a] represent the matrix A and the last



represents B (i.e., Redrowech never pivots on the last column.) Altnately, Redrowech([a],[u],[v]) will return
in [u] the transition matrix used in normalizing [a]. [v] is [u]-1. As in other similar Fermat commands, you
can also do Redrowech([a], ,[v]). 

Minors: extract minors from sparse arrays. The syntax is e.g. [y] : = Minors([x],[r],[c]). [x] is an existing
sparse array. [r] and [c] are existing ordinary arrays specifying the rows and columns to be extracted. The
result is stored in [y], which will be a new sparse array of the right dimensions. [x] is untouched.

FFLU and FFLUC are for fraction-free LU factorization of matrices. See the two articles in the September
1997 SIGSAM Bulletin: "Fraction-free Algorithms for Linear and Polynomial Equations," by Nakos, Turner,
and Williams; and "The Turing Factorization of a Rectangular Matrix," by Corless and Jeffrey. 
    FFLU is invoked as: FFLU([x], [p], [l], [a], [b]). [x] is the n X m matrix to be factored. [p] is an n X n
diagonal matrix consisting of the pivots used, [p] = diag(p_1, p_2, ... , p_(n-1), 1). [l] is the unit lower
triangular matrix, the first factor. [a] (optional) is the n X n permutation matrix of row swaps. [b] (optional)
is [a]^-1. At the end, [x] is in upper triangular form. Let [z] be a copy of the original [x]. If [f] and [g] are
the matrices called f_1 and f_2 in the Corless and Jeffrey article, then at the end one has [f]*[a]*[z] =
[l]*[g]*[x]. Note that [f] and [g] are not computed by FFLU; however it is obvious how to get them from
[p]. Note also that [p] is not necessarily the diagonal of [x]: if columns of 0s are encountered along the way,
[x] will be in row-echelon form and may have 0s on its main diagonal. 
    FFLUC allows column swaps as well as row swaps. In this way, the size of the pivots can be reduced.
FFLUC is invoked as: FFLUC([x], [p], [l], [a], [b], [c], [d]). As above, [x] is the n X m matrix to be
factored. [p], [l], [a], and [b] are the same as above. At the end, [x] is in upper triangular form. [c] and [d]
(optional) are permutation matrices coming from column swaps ([d] is [c]^-1). Let [z] be a copy of the
original [x]. If [f] and [g] are the matrices called f_1 and f_2 in the Corless and Jeffrey article, then at the
end one has [f]*[a]*[z]*[c] = [l]*[g]*[x]. 
     [p], [l], [a], etc. need not be existing matrices when the function is invoked. Matrices of those names
with the right size will be created at the end. 
    Saying that [a], [c], etc. are optional above means that they may be ommitted, for example FFLUC([x],
[p], [l], [a], , [c]). Note the space to indicate no [b].

Sparse Access Loops: There is a need for a way to work efficiently with sparse arrays. For example,
suppose you have a sparse array of 60000 rows and 50000 columns with only 10 or so entries in each row
(this is quite realistic). Suppose you wanted to add up all the entries. Naively, one could write something
like:

for  i  = 1,60000  do  for  j = 1,50000  do  sum  : =  sum + x[i,j]  od  od

But this will do 3,000,000,000 additions, almost all of which are adding 0! This is a preposterous waste of
time. The solution is "sparse column access loops" for sparse arrays. The syntax is, continuing the example
above,

for  i  = 1,60000  do  for  j = [x]i  do  sum  : =  sum + x[i,j]  od  od.

"for j = [x]i do" means find the ith row of [x] and let j run down it - of course encountering only the entries
actually there! So j takes on whatever the column indices are in which x[i,j] <> 0. [x] must be an existing
sparse array, and i must have a value suitable for [x] at the start of the loop. More generally, one may use
the syntax: for j = [x]i,k do ... . Here i and k both refer to rows of the sparse matrix [x]. At the start of the
loop, all nonzero column coords in both rows are found. Then as the loop proceeds, j runs through those
values in order. Any number of row indices is allowed. There is no analogous procedure for "sparse row
loops" due to the way Fermat stores sparse matrices. If necessary, transpose the matrix.


